【20160218】机械原理|常用机构
# M% X/ K% O6 M( {/ K! `9 ]0 \, ~& r9 N! v7 g
同源机构* d# m# ]( p9 W7 P5 j- \
# Y( [. g- G" m7 T( X' M
四杆机构中有一个非常有意思的现象:3个四杆机构可生成同一连杆曲线。这就是有名的Robert-Chebychev定理。
- R1 s ^) \$ e) O9 P: O0 Z首 先 考 察 一 个 如 图 1 所 示 的 铰 链 四 杆 机 构 , 选 择 点 C 作 为 连 杆 上 的 参 考 点 。 通 过 几 何 方 法 , 可 以 得 到 图 2 所 示 的 另 外 两 个 铰 链 四 杆 机 构 O9HGO7 和 O4EFO6 。 这 三 个 机 构 在 点 C 处 具 有 相 同 的 连 杆 曲 线 。 6 a& ]- f, h" S! M8 L* x% {, k; U
1
2
& e1 f ^" r; P5 a( k3 F- M# w4 R
几 何 条 件 : (1)O1 与 O9 重 合 , O3 与 O4 重 合 ; (2) O9HCB 、O3DCE 和 O6FCG 都 是 平 行 四 边 形 ; (3) ΔBCD 、 ΔHGC 、 ΔCFE 和 ΔO1O6O3 都 相 似 。, b& w9 y$ \6 N0 n& p6 F( I
规 律(正 确 性 待 验 ?):杆、三 角 形 一 边 平 移 为 三 角 形 一 边 、 杆 ; 相 似 得 机 架 点 位 置 ; 三 角 形 相 似 得 另 两 边 ; 连 接 。- U6 j3 ?) t+ U; Z
- I% |6 J0 ?( Q9 O5 ^' v
还 可 以 通 过 "Cayley 图 谱 ” 方 法 得 到 同 源 机 构 的 结 构 参 数 。 具 体 如 图 3 所 示 , 假 定 3 个 机 架 点 的 位 置 未 被 锁 住 ( 可 移 动 ) , 将 每 个 机 构 拉 向 各 自 对 应 的 机 架 , 直 到 退 化 成 一 条 直 线 。 这 时 , 所 有 移 动 构 件 的 长 度 不 变 , 所 有 的 角 度 也 不 发 生 改 变 , 唯 一 变 化 的 是 3 个 机 架 点 的 位 置 , 即 机 架 的 长 度 发 生 了 变 化 。 利 用 这 种 方 法 , 可 以 得 到 任 意 一 个 四 杆 机 构 对 应 的 另 外 两 个 同 源 机 构 的 尺 寸 。 例 如 , 通 过 该 图 谱 可 以 得 到 图 4 所 示 机 构 的 同 源 机 构 。 元 机 构 的 连 杆 参 考 点 与 连 杆 的 两 个 铰 链 点 在 一 条 直 线 上 。 ( 就 是 那 四 个 平 行 四 边 形 拼 起 来 了 ~ )
: x% U5 e9 h; K: r/ [% k( |6 @
3
4
) `: h( u3 D( s5 `$ @
曲 柄 滑 块 机 构 也 有 同 源 机 构 。其 中 O1ECB 为 平 行 四 边 形,ΔBCD 和 ΔFCE 相 似 。. a$ E8 [, K: v( |' S
5
6
. E& c1 ?1 j7 _5 ]规 律 (?): 杆、三 角 形 一 边 平 移 为 三 角 形 一 边 、 杆; 机 架 另 一 端 类 型 保 持 一 致 ( 滑 块 ) 。
0 w5 j- t0 z1 z7 Y) ]0 L3 x
$ J, ]( W+ Z" z, o( I4 P! r3 [% q/ o |