【20160404】Follower Motion Schemes. ]% o. t" q/ ?
从动件运动模式
5 |* b; c, s* g) D* j4 {2 C: u$ p
. \& Q3 F5 i) |# J: D1 j4 zIn designing a cam, the objective is to identify a suitable shape for the cam. The primary interest is to ensure that the follower will achieve the desired displacements. The shape of the cam is merely a means to obtain this motion.( U- M N$ u, K3 d
设计凸轮时,我们的目标是找出合适的凸轮外形。但最初的目的是确保从动件将按照预期进行运动。凸轮外形仅仅是获得此种运动的方式。. }# a% ~) K1 b P/ Y+ a
8 a4 V) I1 _4 E. D3 R) ?Constant Velocity:Uniform velocity, and zero acceleration0 F5 N# m; \7 l; Z' b
常速运动:匀速,加速度为零
# A. | N% h0 @ S( l/ n% D1 |, L: ]/ uProblems:The instantaneous jump from one constant value of velocity to another constant value of velocity results in an infinite acceleration.+ N& C8 I+ |' L
问题:从一种匀速状态到另一状态,所需加速度无限大。0 y% { I; }2 s" u. l
constant velocity
5 O- B) I( h( ^9 R& Z4 I" \5 HConstant Acceleration:Constant positive and negative accelerations
' B4 C! p9 C3 o- B% G! S) M f匀加速运动:加速度连续同向
, X( x; e8 c1 s2 T5 u: |Problems:The abrupt changes of acceleration at the end of the motion result in abrupt changes in inertial forces.
. J% w% p4 ?+ Q+ R; b& t! C. q问题:加速度突然转变,所需内力无限大。: ]8 M* J( b) z
constant acceleration
0 X- f9 F2 O, @ z+ J# Q" g# y+ }Harmonic Motion:Harmonic motion is derived from trigonometric functions, thus exhibiting very smooth motion curves.
% P% ]* ^. |, f$ X X& n) ]( k3 W简谐运动:三角函数推导而来,因此具有平滑的运动曲线。
$ }0 r# i1 o! H6 @( B0 \Problems:It has a sudden change of acceleration at the ends of the motion, which can be objectionable at higher speeds.9 y9 N' W3 d& x+ Z5 b" C
问题:在运动末尾加速度会突变,这在高速下十分不便。
, j; j5 r1 A9 J/ ^8 Y( u
harmonic motion
* h% l' X L7 X! M7 w
Cycloidal Motion:Cycloidal motion is another motion scheme derived from trigonometric functions.) p3 `- P: ?# T/ i% q6 }
摆线运动:另一种由三角函数导出的运动类型。: Y1 o$ K2 d) c5 l1 x3 \
This scheme does not have the sudden change in acceleration at the ends of the motion, which makes it popular for high-speed applications.
3 L" w* ]7 [1 J% w c3 |+ ~% o, Q加速度不突变,在高速运动中广为应用。
+ J# f5 ?0 K: U+ S
cycloidal motion
6 \/ @- k* a" L) e1 s6 d; h
: H' K2 l3 I' y) J! @The time derivative of the acceleration is referred to as jerk.
: {4 R. F+ o& l/ T( u加速度对时间的导数称为急动度。
: p$ L8 n) y/ c9 V7 P/ Z
( } H- }$ ^0 ]3 m" t) B; [ Z9 `A summary of the peak velocity, peak acceleration, and peak jerk for the different motion schemes, as a function of the rise H and period of the interval T, is shown in Table 9.5.
; G$ C* q+ H: V _ e如表所示是各种运动模式的速度峰值、加速度峰值及急动度峰值的对比。
" K' V8 }+ U$ I. ^ w4 {, |0 O
Table 9.5
/ t$ K, c+ u+ a' g7 l9 J6 e- z& J* Z; P0 S3 I5 H0 T
|