找回密码
 注册会员

QQ登录

只需一步,快速开始

搜索
楼主: 逍遥处士

我研究数学一点心得:一种从代数式到微分式的快速变换法

[复制链接]
发表于 2013-8-25 22:12:23 | 显示全部楼层
这不就是导数的定义吗 f,(x)=lim[f(x+m)-f(x)]/m,m无限接近0。. Z) ]; O* x2 n

点评

我顶你啊,只能说楼主把大多数人都给忽悠了。  发表于 2013-9-30 16:38
发表于 2013-8-26 14:13:50 | 显示全部楼层
作为一个高等数学全部刮过的表示楼主方法很好,早知道也不至于连续挂高数了
发表于 2013-9-5 21:33:45 来自手机 | 显示全部楼层
呵呵,方程,导数,积分。
发表于 2013-9-12 13:01:49 | 显示全部楼层
学习了!!
发表于 2013-9-30 16:24:32 | 显示全部楼层
从求导的定义就是y'=(f(x+dx)-f(x))/dx, 本质上来说是和楼主的方法一摸一样的。: v8 W5 y, ~" o! f- d
楼主把大多数人都给忽悠啦。哈哈。
发表于 2013-10-3 23:41:50 | 显示全部楼层
容易理解!1
发表于 2013-10-4 07:20:38 来自手机 | 显示全部楼层
导数,微积分,…lz辛苦了!这方法高中数学好像应该学过,复习一下也很好,呵呵。
发表于 2013-10-4 08:30:59 | 显示全部楼层
本帖最后由 Ghostbeing 于 2013-10-4 08:32 编辑
; d) b. W7 {* q3 f
. B5 |8 @# C# ]- D; kLZ当我看到你数学代数式的第一步,我就深深的被你震撼,请告诉我,你凭什么知道你所用的方程式就一定是可微的,在一元里面可导与可微分是等价的,但是在多元微分函数里面,可微与可导就不等价,因为多元函数里要涉及多个维度里的可微分性,保证在全空间任一个平面里函数里可导,楼主请你看看多远微积分那一章节,你仅仅是代数计算而已,忽略了好多,无异于空中楼阁。/ U$ D4 G; b7 y6 I5 }
# r4 U* r8 ~& Q8 e4 h! q
! c' F' ~) j8 N" n3 F! S  t* A0 X
补充内容 (2013-10-4 15:06):
0 |- R( f  `' ]lz继续忽悠吧 也许有天你得出的结论会无视你自己

点评

无视那一套。  发表于 2013-10-4 09:35
发表于 2013-10-6 06:47:17 来自手机 | 显示全部楼层
你能证明两边加上dy,dx后两边还相等吗?
发表于 2013-10-6 07:01:55 来自手机 | 显示全部楼层
你能证明两边加上dy,dx后两边还相等吗?
您需要登录后才可以回帖 登录 | 注册会员

本版积分规则

Archiver|手机版|小黑屋|机械社区 ( 京ICP备10217105号-1,京ICP证050210号,浙公网安备33038202004372号 )

GMT+8, 2025-8-29 09:19 , Processed in 0.068671 second(s), 15 queries , Gzip On.

Powered by Discuz! X3.5 Licensed

© 2001-2025 Discuz! Team.

快速回复 返回顶部 返回列表