找回密码
 注册会员

QQ登录

只需一步,快速开始

搜索

几何证明求助

[复制链接]
 楼主| 发表于 2015-12-10 17:51:13 | 显示全部楼层
苏区男儿 发表于 2015-12-10 16:54 * w# r2 @) K( r/ d0 A
第一题:连接AE,BF,CD. 因AD=BE=CF 得 AE=BF=CD . 所以FE=ED=DF
9 \1 E0 H- N3 @7 h- K& J3 t
你这个不行吧。AD=BE=CF就能导出AE=BF=CD吗?根据是什么?三角形全等?那只知道两条边是不够的+ k$ V6 f. @4 e+ P& h* b
' \2 {5 _+ a9 v" C3 F! z4 ]
 楼主| 发表于 2015-12-10 17:59:06 | 显示全部楼层
duduxiaozi32 发表于 2015-12-10 15:56
+ Y. S2 p/ Q: I' y* \第一题用坐标的方法可解;/ s* r9 P8 a8 [( z5 P5 X" G
设三角形ABC边长为a,以B点为0点做坐标,可知A、C点坐标。
. `. `! M4 O1 o3 C: J$ j' N% x分别设D、E、F三点的 ...
0 A' [1 ?8 q0 l+ u( A
今天用坐标法试了一下,发现此路不通。原因如下" F% O& J6 X! E& V4 ]
第一,你说的第一组方程组其实只有两个方程,第三个是冗余的。比如A=B,B=C,那么A=C就是冗余的) _- h; \, w/ N6 o7 ^3 L
第二,五个方程,没一个是线性的,六个未知量,如何解出?/ v* l( ~# r  T/ Q
你可以试一下哈
* {- `; y$ `2 {  S
$ D+ @, r: z7 Q- k
( J/ _/ P% X3 q9 v, }: g
发表于 2015-12-10 20:19:37 | 显示全部楼层
阳光小院暖茶 发表于 2015-12-10 17:51 ) l' h+ R9 S3 q8 |
你这个不行吧。AD=BE=CF就能导出AE=BF=CD吗?根据是什么?三角形全等?那只知道两条边是不够的
3 q/ ~" R! C: h/ S" {9 [1 k1 K
连AE线后得出AEB  的三角,连BF得出BFC的三角,连CD 得出CDA的三角.  因 AD=BE=CF      AB=BC=AC 是不是得出AEB=BFC=CDA 的三个全等三角形。得出AE=BF=CD。所以FDC=EFB=DEA  所以EF=ED=DF
 楼主| 发表于 2015-12-10 21:02:57 | 显示全部楼层
苏区男儿 发表于 2015-12-10 20:19 ' u5 Y6 g. [6 m. j. E
连AE线后得出AEB  的三角,连BF得出BFC的三角,连CD 得出CDA的三角.  因 AD=BE=CF      AB=BC=AC 是不是得 ...
+ ~, A0 I7 B$ @8 ]; a9 Q: b
三角形AEB,三角形BFC,三角形CDA,并没有全等的充分依据。你只是依据其中两条边对应相等,这没错,但是不够。没有任何的直接信息表明,它们有某个角对应相等。
" @8 F- x8 m6 K. O; s
发表于 2015-12-10 21:23:59 | 显示全部楼层
正弦定理还证明不了吗?
发表于 2016-1-21 14:23:12 | 显示全部楼层
为何我发现这两道题都缺少条件- -
您需要登录后才可以回帖 登录 | 注册会员

本版积分规则

Archiver|手机版|小黑屋|机械社区 ( 京ICP备10217105号-1,京ICP证050210号,浙公网安备33038202004372号 )

GMT+8, 2025-7-21 11:08 , Processed in 0.062246 second(s), 14 queries , Gzip On.

Powered by Discuz! X3.5 Licensed

© 2001-2025 Discuz! Team.

快速回复 返回顶部 返回列表