找回密码
 注册会员

QQ登录

只需一步,快速开始

搜索
查看: 4590|回复: 2

霍尼韦尔年内3D打印航空发动机

[复制链接]
发表于 2016-6-4 19:09:52 | 显示全部楼层 |阅读模式
2015年年初其首次运用3D打印技术生产出了HTF7000发动机的一个部件,霍尼韦尔计划今年再进一步,将多个3D打印部件装入TPE331发动机。这两个型号的发动机在全球支线客机和通航飞机上运用广泛。  
9 V2 ], n, b3 W3 J3D打印在国内方兴未艾。但3D打印技术在国外已经发展多年,早期称为增材制造(Additive Manufacturing)。霍尼韦尔增材制造专家Donald Godfrey向记者介绍,目前市面上主要增材制造技术包括直接金属激光烧结、电子光束熔炼和硅砂成型等几大类型,技术指标各有不同。
( c( F2 ^8 J4 i) i% m7 F  9 g) B3 p- q; n
“3D打印技术的好处是提升零部件质量,大幅缩短生产和交付时间,从而节约投入成本,此外也可以减轻零部件重量。”Donald Godfrey向记者说。但他也表示,由于成本等原因,目前3D打印技术更多地用于产品设计或者测试,还无法用于大规模量产。
9 w3 v# B. t$ p/ w4 @: K# m  
4 E6 z  u0 b* o! A% |' L不过霍尼韦尔已经为3D打印技术画出蓝图——到2020年,40%的飞机零部件将采用3D打印技术生产。包括凤凰城和上海在内,霍尼韦尔已经在全球设立了四个3D打印技术实验室,试图提升现有3D打印技术的成熟度。: U. `' f$ z+ i: E0 d) F# r
  
6 ^. n( O4 f: t( p4 M& {& ^
8 X/ v! g. a+ L0 V  
% `3 o( K4 L! o0 z! y9 C: I霍尼韦尔总部位于美国亚利桑那州凤凰城,其增材制造中心也设立在此。此前,这一业务很少对媒体开放。7 g8 `3 f5 R: C, P4 A
  % Q# t/ m( Z, w/ H1 g+ c# p
Donald Godfrey是霍尼韦尔事业部的研究员级工程师,在先进制造工程部负责新产品研发。记者在他的讲解下见到了使用3D打印零部件的过程,以及打印出来的样件。- f8 O1 f) d0 o3 ~
  
& c: ?0 e* I. p样件看上去并不起眼。记者拿到的样件包括一个网格状的立方体、一个等比例缩小后的发动机模型、一个横切面和一个钥匙链,长宽高都在十厘米之内。但和传统方式生产出的同一产品比较便可发现,3D打印产品重量要轻上一半左右,并且能用更少的材料和体积,达到同样的使用需求。
1 q2 X0 X' B7 C* p  
: |. ]+ L/ l! F6 Z! }Donald Godfrey介绍,目前霍尼韦尔正在研究的增材制造技术分为硅砂成型(或称砂型3D打印技术)、激光烧结(DMLS)以及电子束熔炼(EBM)三类。无论采用哪种机器,其工作原理都是通过软件建模,将要打印的部件切割成无数层数字切片,在此过程中,每一层实体切片需要不断与电脑建模的数字切片对比,从而发觉偏差,进行修正。/ n; G# V- z3 B0 ]- @$ {- v* t8 L
  
6 |" Q1 U3 F+ N8 R* ~: b三种技术中硅砂成型较为普遍,另外两种则对材质的耐温性要求更高:激光烧结的温度在200度以上,电子束熔炼超过1900度。" S" h9 _5 y, z& i& z3 }
  
, m9 I. z' v& A霍尼韦尔是航空航天业中第一家采用电子束熔炼技术、以718镍基超合金生产零部件的企业。718镍基超合金是目前应用最为广泛的高温超合金之一。  S' z3 L$ Y# z% N1 Q
  & A6 x4 W" {6 D
“电子束熔炼技术的优势有四个方面,不需要模具,可以减少时间成本,任何金属材质都可以加工,并且能够支持各种复杂的几何结构,设计上更为灵活。”Donald Godfrey总结道。在霍尼韦尔看来,从严格意义上讲,电子束熔炼技术才是真正的3D打印技术。
% ^+ u, _2 }* F5 i# e7 s  & C8 ~! f7 v' _) _7 h' d
去年1月,霍尼韦尔首次采用电子束熔炼技术“打印”出了HTF7000发动机的管腔。这一发动机型号广泛应用于一系列中远程公务机,包括在国内较为常见的达索猎鹰、庞巴迪挑战者、湾流等机型。
" s1 Q- V& `1 [1 O$ y7 u) s$ w5 A  8 ^  z# U4 s: O6 z3 j- ]' i
霍尼韦尔副总裁Bob Smith对记者介绍,未来新技术运用后,有望降低50%的制造成本。成本节约是因为简化了设计程序——在新技术的帮助下,8个部件可以组合成1个部件,交付周期可以从几个月大幅缩短到几周。比如以往用传统工艺研制涡轮叶片的样件需要三年,结合3D打印技术仅需要9周。+ g, T# |0 B- c, v3 {
  
) H* W: C1 Z7 E1 ?5 |9 u/ Z; NDonald Godfrey表示,今年霍尼韦尔还会更进一步,年内将打印6个TPE331发动机部件。霍尼韦尔生产的这一发动机型号已经生产了上万台。0 J8 y6 e+ c0 [# @
  
/ t0 t! z7 `+ b  W5 h" S8 F大规模量产尚需时日
2 h' U7 P4 `2 y  * ~* Z7 g. R% M1 a4 y& D
不过Bob Smith和Donald Godfrey等诸多霍尼韦尔人士都坦率地表示,目前3D打印技术还是用于产品原型设计和测试产品,并没有用于大批量生产。# C% V$ U! c9 o  g" ^2 C
  
$ \( F. @( n' `7 @% z霍尼韦尔在实践后发现,目前3D打印技术的经济效率还不足以和传统铸造技术匹敌,大多数公司3D打印的部件是按照铸造或加工的目的而设计的,使用增材制造理念设计部件的还不普及。
7 k$ S; h8 [4 l; V  ! B1 f3 Q9 L* ?1 p7 y' q; K8 E
从Donald Godfrey的经验来看,目前采用3D打印技术生产部件可以节省时间,但成本更高,技术更广泛地推开才能降低成本。
% [; X1 O" |* z  Y7 q  ! B3 t3 }- |- r  I2 @
此外,航空器的组装过程也较为复杂。3D打印技术还不足以代替传统的组装程序。一些3D打印技术能够支持的部件大小有限。
8 I5 U. w7 A7 }/ ?  
/ t$ ]6 T/ G5 P- s目前霍尼韦尔在凤凰城、上海、印度班加罗尔和捷克布尔诺设立了3D打印技术实验室,进一步测试现有技术的成熟度。以上海实验室为例,其3D打印技术能够打印出长宽高最大为25cm、25cm、32.5cm的部件。' [+ \9 G7 A" ^  S) o. I, S
  & v9 [0 \' k: G% {3 n
按照霍尼韦尔提供的资料,公司计划到2020年实现40%的部件采用增材制造的理念设计,也就是40%的部件都具备采用3D打印技术生产的能力。. Y9 A& q% l" E
回复

使用道具 举报

发表于 2016-6-5 11:19:26 | 显示全部楼层
回复

使用道具 举报

发表于 2016-6-5 15:08:28 | 显示全部楼层
1111
回复

使用道具 举报

您需要登录后才可以回帖 登录 | 注册会员

本版积分规则

Archiver|手机版|小黑屋|机械社区 ( 京ICP备10217105号-1,京ICP证050210号,浙公网安备33038202004372号 )

GMT+8, 2025-9-19 06:39 , Processed in 0.070255 second(s), 17 queries , Gzip On.

Powered by Discuz! X3.5 Licensed

© 2001-2025 Discuz! Team.

快速回复 返回顶部 返回列表