|
2015年年初其首次运用3D打印技术生产出了HTF7000发动机的一个部件,霍尼韦尔计划今年再进一步,将多个3D打印部件装入TPE331发动机。这两个型号的发动机在全球支线客机和通航飞机上运用广泛。
9 E/ s' A+ \/ c1 k6 m2 v3D打印在国内方兴未艾。但3D打印技术在国外已经发展多年,早期称为增材制造(Additive Manufacturing)。霍尼韦尔增材制造专家Donald Godfrey向记者介绍,目前市面上主要增材制造技术包括直接金属激光烧结、电子光束熔炼和硅砂成型等几大类型,技术指标各有不同。; M7 j3 \( d+ t$ [8 c0 S/ w
- ]& [: t; B& {3 u“3D打印技术的好处是提升零部件质量,大幅缩短生产和交付时间,从而节约投入成本,此外也可以减轻零部件重量。”Donald Godfrey向记者说。但他也表示,由于成本等原因,目前3D打印技术更多地用于产品设计或者测试,还无法用于大规模量产。
/ w; M6 r$ q: r2 U! s5 ~1 `
$ _6 z* d4 F' h$ p不过霍尼韦尔已经为3D打印技术画出蓝图——到2020年,40%的飞机零部件将采用3D打印技术生产。包括凤凰城和上海在内,霍尼韦尔已经在全球设立了四个3D打印技术实验室,试图提升现有3D打印技术的成熟度。% I* D. ]; e. g: v/ f
' [% g2 `0 K0 _
- N5 `8 [1 N+ y0 o& o7 G1 c/ D
" }. U" |/ f5 z/ |& g霍尼韦尔总部位于美国亚利桑那州凤凰城,其增材制造中心也设立在此。此前,这一业务很少对媒体开放。
8 M2 e* R; Y+ ?, o. |& n! @ 3 l' P/ r3 z9 z$ K$ @3 U
Donald Godfrey是霍尼韦尔事业部的研究员级工程师,在先进制造工程部负责新产品研发。记者在他的讲解下见到了使用3D打印零部件的过程,以及打印出来的样件。( ` E; @/ Q r' C6 i, t( w
% {5 e2 D) @5 L
样件看上去并不起眼。记者拿到的样件包括一个网格状的立方体、一个等比例缩小后的发动机模型、一个横切面和一个钥匙链,长宽高都在十厘米之内。但和传统方式生产出的同一产品比较便可发现,3D打印产品重量要轻上一半左右,并且能用更少的材料和体积,达到同样的使用需求。
" ~7 x w" H& b( s# Y 5 G# ?; R% X# C, Z+ L' y7 a
Donald Godfrey介绍,目前霍尼韦尔正在研究的增材制造技术分为硅砂成型(或称砂型3D打印技术)、激光烧结(DMLS)以及电子束熔炼(EBM)三类。无论采用哪种机器,其工作原理都是通过软件建模,将要打印的部件切割成无数层数字切片,在此过程中,每一层实体切片需要不断与电脑建模的数字切片对比,从而发觉偏差,进行修正。# A$ |8 f! @& k5 N9 g: `
+ r' F8 r% W6 L6 _三种技术中硅砂成型较为普遍,另外两种则对材质的耐温性要求更高:激光烧结的温度在200度以上,电子束熔炼超过1900度。
! ^6 V, K9 L- v' a3 M l 9 j/ c' t5 P" Y( k
霍尼韦尔是航空航天业中第一家采用电子束熔炼技术、以718镍基超合金生产零部件的企业。718镍基超合金是目前应用最为广泛的高温超合金之一。
0 C0 Q, D$ s P9 I1 D
" V% c# w' ^ e“电子束熔炼技术的优势有四个方面,不需要模具,可以减少时间成本,任何金属材质都可以加工,并且能够支持各种复杂的几何结构,设计上更为灵活。”Donald Godfrey总结道。在霍尼韦尔看来,从严格意义上讲,电子束熔炼技术才是真正的3D打印技术。
/ I9 g. s0 l$ j P9 l' ] Y
2 e3 ?# H: X1 S8 U5 V. l去年1月,霍尼韦尔首次采用电子束熔炼技术“打印”出了HTF7000发动机的管腔。这一发动机型号广泛应用于一系列中远程公务机,包括在国内较为常见的达索猎鹰、庞巴迪挑战者、湾流等机型。
' j5 U# m+ X, ~) L 7 T! @$ H) ]! N5 |/ L5 B
霍尼韦尔副总裁Bob Smith对记者介绍,未来新技术运用后,有望降低50%的制造成本。成本节约是因为简化了设计程序——在新技术的帮助下,8个部件可以组合成1个部件,交付周期可以从几个月大幅缩短到几周。比如以往用传统工艺研制涡轮叶片的样件需要三年,结合3D打印技术仅需要9周。; s, T9 }$ S. I8 }
, e, s1 q: y! A7 o- {) k$ t! l& lDonald Godfrey表示,今年霍尼韦尔还会更进一步,年内将打印6个TPE331发动机部件。霍尼韦尔生产的这一发动机型号已经生产了上万台。 W0 j! l% x4 r0 m: n$ C
) i# s$ f, Z a( ~) l: y
大规模量产尚需时日$ I( P# O ^1 V
& F0 B0 Q/ g# q
不过Bob Smith和Donald Godfrey等诸多霍尼韦尔人士都坦率地表示,目前3D打印技术还是用于产品原型设计和测试产品,并没有用于大批量生产。& V& r' ]4 C* F& p/ S3 S
7 I. D1 d+ |8 h- D B4 Z& V$ L# O( ~
霍尼韦尔在实践后发现,目前3D打印技术的经济效率还不足以和传统铸造技术匹敌,大多数公司3D打印的部件是按照铸造或加工的目的而设计的,使用增材制造理念设计部件的还不普及。
4 j- g+ W6 g. \6 \! O0 Y 4 p; F1 d2 v* t) G, _# }8 `
从Donald Godfrey的经验来看,目前采用3D打印技术生产部件可以节省时间,但成本更高,技术更广泛地推开才能降低成本。
+ M) y. k0 a+ L# R" F9 K: `
; j3 X9 X2 o% |1 D4 M; m此外,航空器的组装过程也较为复杂。3D打印技术还不足以代替传统的组装程序。一些3D打印技术能够支持的部件大小有限。
; t! z5 o% D, Q5 }2 ~- Z% J. p - r9 P% A, q: @ ~/ i/ e
目前霍尼韦尔在凤凰城、上海、印度班加罗尔和捷克布尔诺设立了3D打印技术实验室,进一步测试现有技术的成熟度。以上海实验室为例,其3D打印技术能够打印出长宽高最大为25cm、25cm、32.5cm的部件。+ s) Q6 I. Z- u' g) v
" W: [* f1 ~' _1 l" E4 j按照霍尼韦尔提供的资料,公司计划到2020年实现40%的部件采用增材制造的理念设计,也就是40%的部件都具备采用3D打印技术生产的能力。" A, P2 v1 A/ j
|
|