|
1.模具的制造精度. @1 }( C( S! t* Y
组织转变不均匀、不彻底及热处理形成的残余应力过大,造成模具在热处理后的加工、装配和模具使用过程中的变形,从而降低模具的精度,甚至报废。
) g! Z9 X- V4 q: H, D5 S2.模具的强度/ b4 n- P/ Q, l
热处理工艺制定不当、热处理操作不规范或热处理设备状态不完好,造成被处理模具强度(硬度)达不到设计要求。5 i/ L7 W$ G: ?5 o2 {+ k
3.模具的工作寿命. N. z5 y% m5 {5 L B& _- b
热处理造成的组织结构不合理、晶粒度超标等,导致主要性能如模具的韧性、冷热疲劳性能、抗磨损性能等下降,影响模具的工作寿命。
4 @2 r% @8 ]$ e4.模具的制造成本$ E4 J$ s$ e% J0 x
作为模具制造过程的中间环节或最终工序,热处理造成的开裂、变形超差及性能超差,大多数情况下会使模具报废,即使通过修补仍可继续使用,也会增加工时,延长交货期,提高模具的制造成本。
( M7 G. S% H; p1 c. H! x正是热处理技术与模具质量有十分密切的关联性,使得这两种技术在现代化的进程中,相互促进,共同提高。
' N5 Z i9 f7 l% E. H1 l, p
( O5 f9 @8 V4 E/ F$ R近年来,国际模具热处理技术发展较快的领域是:真空热处理技术、模具的表面强化技术和模具材料的预硬化技术。
; `4 @8 N0 S2 i0 F9 K一、模具的真空热处理技术
5 k8 V" Q1 n$ G2 `4 D 真空热处理技术,是近些年发展起来的一种新型的热处理技术,它所具备的特点,正是模具制造中所迫切需要的,比如,防止加氧化和不脱碳、真空脱气或除气,消除氢脆,从而提高材料(零件)的塑性、韧性和疲劳强度。真空加热缓慢、零件内外温差较小等因素,决定了真空热处理工艺造成的零件变形小等。4 w- w: c+ C8 B
按采用的冷却介质不同,真空淬火可分为:真空油冷淬火、真空气冷淬火、真空水冷淬火和真空硝盐等温淬火。模具真空热处理中主要应用的是真空油冷淬火、真空气冷淬火和真空回火。为保持工件(如模具)真空加热的优良特性,冷却剂和冷却工艺的选择及制定非常重要,模具淬火过程主要采用油冷和气冷。" ]. {% q2 M2 u2 ]( D* K; A% J
对于热处理后不再进行机械加工的模具工作面,淬火后尽可能采用真空回火,特别是真空淬火的工件(模具),它可以提高与表面质量相关的机械性能,如疲劳性能、表面光亮度、腐蚀性等。/ {$ }) T; Y8 K) r
热处理过程的计算机模拟技术(包括组织模拟和性能预测技术)的成功开发和应用,使得模具的智能化热处理成为可能。由于模具生产的小批量(甚至是单件)、多品种的特性,以及对热处理性能要求高和不允许出现废品的特点,又使得模具的智能化处理成为必须。2 A8 i6 l. b# Q/ j
模具的智能化热处理包括:明确模具的结构、用材、热处理性能要求;模具加热过程温度场、应力场分布的计算机模拟;模具冷却过程温度场、相变过程和应力场分布的计算机模拟;加热和冷却工艺过程的仿真;淬火工艺的制定;热处理设备的自动化控制技术等。国外工业发达国家,如美国、日本等,在真空高压气淬方面,已经开展了这方面的技术研发,主要针对目标也是模具。" }4 Q, d; J( e3 E+ f9 u
二、模具的表面处理技术3 F, B2 q+ P! ~7 w B9 C0 ]* I
模具在工作中,除了要求基体具有足够高的强度和韧性的合理配合外,其表面性能对模具的工作性能和使用寿命至关重要。这些表面性能指:耐磨损性能、耐腐蚀性能、摩擦系数、疲劳性能等,这些性能的改善,单纯依赖基体材料的改进和提高是非常有限的,也是不经济的,而通过表面处理技术,往往可以收到事半功倍的效果,这也正是表面处理技术得到迅速发展的原因。/ X( l! l! m- K( f. ]
模具的表面处理技术,是通过表面涂覆、表面改性或复合处理技术,改变模具表面的形态、化学成分、组织结构和应力状态,以获得所需表面性能的系统工程。从表面处理的方式上,又可分为:化学方法、物理方法、物理化学方法和机械方法。虽然旨在提高模具表面性能新的处理技术不断涌现,但在模具制造中应用较多的主要的渗氮、渗碳和硬化膜沉积。8 ^; R6 ^. K1 G6 c' I6 T
(1)渗氮
8 E" w" t/ i* \; _: X; _; V 渗氮工艺有气体渗氮、离子渗氮、液体渗氮等方式。每一种渗氮方式中,都有若干种渗氮技术,可以适应不同钢种、不同工件的要求。由于渗氮技术可形成优良性能的表面,并且渗氮工艺与模具钢的淬火工艺有良好的协调,同时,渗氮温度低,渗氮后不需激烈冷却,模具的变形极小,因此,模具的表面强化是采用渗氮技术较早,也是应用最广泛的。
- {, g6 `6 E0 Z* A- v(2)渗碳
: `0 S% d5 }; I$ m8 t2 g0 c0 | 模具渗碳的目的,主要是为了提高模具的整体强韧性,即模具的工作表面具有高的强度和耐磨性。由此引入的技术思路是,用较低级的材料,即通过渗碳淬火来代替较高级别的材料,从而降低制造成本。, f, y1 C3 T5 f+ o6 x9 a/ d
(3)硬化膜沉积
( s8 n' }& Q6 U8 c+ n 硬化膜沉积技术,目前较成熟的是CVD和PVD。为了增加膜层工件表面的结合强度,现在发展了多种增强型CVD、PVD技术。9 O/ X [/ ?8 o% L$ V2 g1 b
硬化膜沉积技术最早在工具(刀具、刃具、量具等)上应用,效果极佳,多种刀具已将涂覆硬化膜作为标准工艺。模具自上个世纪80年代开始采用涂覆硬化膜技术,目前的技术条件下,硬化膜沉积技术(主要是设备)的成本较高,仍然只在一些精密、长寿命模具上应用,如果采用建立热处理中心的方式,则涂覆硬化膜的成本会大大降低,更多的模具如果采用这一技术,可以整体提高我国的模具制造水平。+ D( y- M; R7 `' N3 \: N, E- P& T+ B
三、模具材料的预硬化技术$ Z3 g- A! u4 a) q
模具在制造过程中进行热处理,是绝大多数模具长时间沿用的一种工艺,自上个世纪70年代开始,国际上就提出了预硬化的想法,但由于加工机床刚度和切削刀具的制约,预硬化的硬度无法达到模具的使用硬度,所以,预硬化技术的研发投入不大。
! i* B: } P- G9 O" h `随着加工机床和切削刀具性能的提高,模具材料的预硬化技术开发速度加快,到上个世纪80年代,国际上工业发达国家,在塑料模用材上使用预硬化模块的比例已达到30%(目前在60%以上)。我国在上世纪90年代中后期开始采用预硬化模块(主要用国外进口产品)。
' V8 ?- D g9 h0 ?. k: M模具材料的预硬化技术,主要在模具材料生产厂家开发和实施。通过调整钢的化学成分和配备相应的热处理设备,可以大批量生产质量稳定的预硬化模块。我国在模具材料的预硬化技术方面,起步晚,规模小,目前还不能满足国内模具制造的要求。
7 X7 F; b( M8 a* Q! i采用预硬化模具材料,可以简化模具制造工艺,缩短模具的制造周期,提高模具的制造精度。可以预见,随着加工技术的进步,预硬化模具材料会用于更多的模具类型。7 C! h4 M/ v9 } r$ z
|
|