找回密码
 注册会员

QQ登录

只需一步,快速开始

搜索
查看: 16963|回复: 43

从微分方程反推结构轮廓曲线

[复制链接]
发表于 2012-3-25 19:09:26 | 显示全部楼层 |阅读模式
试观此图,一卡盘耳。
! Z" z9 f; |1 j- y! R2 ?" A' o卡瓦色红,其座色黄。: |0 e+ m3 x: B0 j- y
一动上下,一动左右。' Z, i+ U7 I6 [) _
静若处子,动若脱兔。- ?+ j# @/ h: f4 H$ X6 z
斜面增力,夹紧圆杆。: R# t% T; z& V* e2 G+ Q0 i
碟簧夹紧,液压松开。, P; ^9 B% I8 }+ q' W6 _# d
卡瓦长久,难免磨损。* b; K1 v% {9 J0 ~! @' w
磨损一道,力衰过百。
: d- }: P: J, U7 `* q汝若不信,试算即知。/ r1 b! b9 B3 H$ X+ r5 A2 ~

4 D1 X5 Q1 o/ b, z( f- j: x/ o* a) B, p, z7 ^3 ^5 U
余观此图,若有所思。
3 x0 u" ?) `4 E+ n0 b" |3 k% D; G簧伸一寸,力减数百。
( Q* t! V6 h- m斜面放大,力损数吨。
; u0 d9 f' N2 i" |# Z: K何故如此?压角使然。4 D9 i1 b! V3 T) N* I5 P
若除此弊,得到恒力,
3 f. n$ x, ]1 V* m0 Y可使压角,随簧而变。
  p, g0 b) a, `; V6 g$ M斜面本直,今可使曲,# }5 I: g% _! Z) t: B1 X
曲成何状,颇费思量。2 M* p5 M0 f: F% T$ O; x

6 \8 g9 l/ ]! Z* F8 f初试圆弧,细细推算。( w1 x1 T) ~( N1 y
压角虽变,状为余弦。
( d0 `3 t0 Y" c7 g簧力虽减,夹力不减。6 l- G: x) }" |3 [- b
力虽不减,大小多变。
& x4 K; b+ m4 R( M  y+ f0 S大小多变,其非我愿。$ b$ @' R- J$ S: A/ J3 @1 t
5 s. h' p/ X2 r, w
穷索冥搜,废寝忘食。
' t, X9 {/ ], o夜以继日,不知多时。
: l/ w9 R0 C1 a. B忽而得之,线性二字。3 s" {7 j( ?$ g
碟簧刚度,乃一直线。
2 {. v4 m* `7 J3 o7 X今令压角,随簧而变。. K8 i; x3 p- U, v2 }6 V
如何随变?也成直线。# d, e  q$ y- X5 u- S+ M6 p% K
此消彼长,此盈彼缩。( O9 o9 U" I+ i7 G- d; [
一正一倒,相乘不变。- f  I# H  x0 X  W& \
) w& k$ Z4 Z" `; i# Z
曲线斜率,正是压角。
& s* C: X8 \( x碟簧线性,斜率亦然。$ i* W+ X1 @" v
亦然如何?△y/△x=kx。
0 t! y: o9 }6 O0 W* N继续细分,dy/dx=kx。
; z- o) {3 X8 S8 N) j: h  m/ |再接再厉,y'=kx。. a3 w- Y5 [+ j. S3 [2 Q6 b) q- m3 C
疾积其势,y=0.5kx^2。/ g5 {: _* g0 p5 x0 h  a6 m+ \, a
事一至此,豁然开朗。
6 I# w! V2 J6 \; {& i) R+ P人皆知其名,乃抛物线耳。* W# W: _) D( W5 D- D

( o, ?0 @% X! f8 |
2 b! r, v5 F  {4 |# @: `6 |3 H: e( e8 d! b$ S; D/ P$ B+ k7 ]

) v* H. C4 J2 b% I' ^' }  u  |随你磨损,夹力不损。
: f' W7 m8 n- t( L3 y其它因素,以后修正。
$ u  t+ _0 B/ m) w* e2 N只此一思,乃其关键。
: S2 Q" X; m" y/ e1 y' ^% w只是理论,未付实践。
# Q( v2 l  w% _" V" P8 ?尚不知此法是否可行,2 T9 [% r" t2 p8 r6 [
故此写出请大家指点。
7 ~$ h2 ~' [2 B' W4 E
! w& [3 L, ]# X1 E) d% i' t1 \# l8 i' |

本帖子中包含更多资源

您需要 登录 才可以下载或查看,没有账号?注册会员

×

点评

游客
  发表于 2012-3-25 19:43
绝。  发表于 2012-3-25 19:43

评分

参与人数 2威望 +51 收起 理由
风追云 + 1
老鹰 + 50 社区骄傲。

查看全部评分

本帖被以下淘专辑推荐:

  • · 基础|主题: 799, 订阅: 90
回复

使用道具 举报

发表于 2012-3-25 19:52:24 | 显示全部楼层
已知需求,求曲线(函数),泛函的境界。有空,一定跟大侠学习一下这个反推。3 s- V0 q5 Z8 }9 J6 P$ t) n0 @
发表于 2012-3-25 19:53:10 | 显示全部楼层
收藏了,周末愉快!!!!
 楼主| 发表于 2012-3-25 19:58:21 | 显示全部楼层
本帖最后由 韦编三绝 于 2012-3-25 19:59 编辑
) w/ h, u0 q- l/ i# W2 m+ `  t, f$ y: S1 O# u* z$ M
2楼羞杀我也。敝人原题不是如此,乃是“一种新型卡瓦斜面增力机构”。近日论坛各位大侠不是弘扬数学么,于是敝人也用这个题目助一下大家的声势。
/ t) Q* O" S; `1 j4 C) P! x9 u' E实话说,这个题目有点大,不过不大不足以吸引人气嘛。
# C! J* @: ]( c' y& L& p$ u高明谅之。

点评

游客
  发表于 2012-9-24 07:25
对自然界的深刻研究是数学的富饶渊源。  发表于 2012-9-24 07:25
大家谬也,我认为不应该弘扬,惹的大家一阵骚动,拼命学习,过一段时间就偃旗息鼓了。大侠更不应该推波助澜,大侠的实例,以实际讨论见数学真知,足矣。  发表于 2012-3-25 20:12
发表于 2012-3-25 20:22:47 | 显示全部楼层
楼主,你不仅仅是数学好啊。语文也肯定杠杠滴
发表于 2012-3-25 21:43:52 | 显示全部楼层
此消彼长,其积不变。何以遂愿?请看本篇。
发表于 2012-3-25 22:12:10 | 显示全部楼层
楼主真是人才啊
* R! }$ }4 G( C: c! \不只是数学
) p  R& I2 n! K7 R- p3 y* t就语文能力太强大了

点评

hao  发表于 2012-7-27 14:43
发表于 2012-3-25 22:37:45 | 显示全部楼层
楼主大才,思路很好,提一点看法,原来的直线虽然也不能做到平均压力,但也可看做面接触,相比这种曲线的点接触,接触应力会小一些,而曲线的可能磨损会更快一些,也有可能会出现压溃

点评

游客
  发表于 2012-3-26 20:32
楼主很有创造性思维,我有点疑惑,线接触的稳定不好,那同轴度如何保证,进而有可能卡死;当然如果在保证同轴度的前提,将卡瓦换成外硬内软的材质,这样可以提高接触强度。  发表于 2012-3-26 20:32
这个是点接触还是也可以做成线接触?想象不出来了..  发表于 2012-3-25 23:11
不错。利弊同陈,权衡取舍。不过看曲线形状,应该比齿轮的接触应力还低一些。具体需计算。  发表于 2012-3-25 22:43

评分

参与人数 1威望 +1 收起 理由
20120804 + 1 不错。利弊同陈,权衡取舍。不过看曲线形状.

查看全部评分

发表于 2012-3-25 23:07:26 | 显示全部楼层
太难了,听到这些就头晕
发表于 2012-3-26 08:11:15 | 显示全部楼层
有点汉赋的风格。不过点接触,接触点压强过大,可能更容易磨损。
您需要登录后才可以回帖 登录 | 注册会员

本版积分规则

Archiver|手机版|小黑屋|机械社区 ( 京ICP备10217105号-1,京ICP证050210号,浙公网安备33038202004372号 )

GMT+8, 2025-7-12 20:05 , Processed in 0.082567 second(s), 22 queries , Gzip On.

Powered by Discuz! X3.5 Licensed

© 2001-2025 Discuz! Team.

快速回复 返回顶部 返回列表