机械社区

 找回密码
 注册会员

QQ登录

只需一步,快速开始

搜索
查看: 7601|回复: 19

Geometry_of_Single_point_Turning_Tools_and_Drills

[复制链接]
发表于 2011-6-23 22:58:22 | 显示全部楼层 |阅读模式
本帖最后由 机器鼠 于 2011-6-23 23:18 编辑
, b; k* Y; V, C4 D6 [6 Y/ {1 |5 J1 j. L5 M4 I
Geometry_of_Single_point_Turning_Tools_and_Drills__Fundamentals_and_Practical_Applications.pdf
# M0 @$ F3 `! z( A& Y6 I/ v3 B有要的吗?刀具,细节,很到位。英文版。  @- R. \  B8 G' s! a& u- H
国内无人这么细研究的吧?

Geometry_of_Single_point_Turning_Tools_and_Drills__Fundamentals_and_Practical_Ap.rar

4.35 MB, 阅读权限: 90, 下载次数: 8, 下载积分: 威望 -10 点

7

Geometry_of_Single_point_Turning_Tools_and_Drills__Fundamentals_and_Practical_Ap.rar

4.35 MB, 下载次数: 7, 下载积分: 威望 -10 点

6

Geometry_of_Single_point_Turning_Tools_and_Drills__Fundamentals_and_Practical_Ap.rar

4.35 MB, 下载次数: 8, 下载积分: 威望 -10 点

5

Geometry_of_Single_point_Turning_Tools_and_Drills__Fundamentals_and_Practical_Ap.rar

4.35 MB, 下载次数: 6, 下载积分: 威望 -10 点

4

Geometry_of_Single_point_Turning_Tools_and_Drills__Fundamentals_and_Practical_Ap.rar

4.35 MB, 下载次数: 6, 下载积分: 威望 -10 点

3

Geometry_of_Single_point_Turning_Tools_and_Drills__Fundamentals_and_Practical_Ap.rar

4.35 MB, 下载次数: 6, 下载积分: 威望 -10 点

2

Geometry_of_Single_point_Turning_Tools_and_Drills__Fundamentals_and_Practical_Ap.rar

140.75 KB, 阅读权限: 90, 下载次数: 7, 下载积分: 威望 -10 点

1

回复

使用道具 举报

发表于 2011-6-24 19:17:16 | 显示全部楼层
说什么的?
回复 支持 反对

使用道具 举报

 楼主| 发表于 2011-6-24 22:02:25 | 显示全部楼层
Although almost any book and/or text on metal cutting, cutting tool design, and
' u* }2 u" s/ Y& Z; Zmanufacturing process discusses to a certain extent the tool geometry, the body of 9 j0 r& |6 o+ s. Y9 r
knowledge on the subject is scattered and  confusing. Moreover, there is no clear ( H1 _& ]/ n  g* e/ O
objective(s) set in the selection of the tool geometry parameters so that an answer 9 ^: R/ c/ z; L, G# R( w5 X0 _* t
to a simple question about optimal tool geometry cannot be found in the literature ( A1 V( K5 n' p, G+ Q! k
on the subject. This is because a criterion (criteria) of optimization is not clear, on   d  t" ?- h6 y
one hand, and because the role of cutting tool geometry in machining process 7 g" K0 E+ n* e: V5 T
optimization has never been studied systematically, on the other. As a result, many ! D& \$ {, a- ~+ j7 i2 O2 W
practical tool/process designers are forced to use extremely vague ranges of tool
' h% L8 H4 {0 z3 i" z' ageometry parameters provided by handbooks. Being at least 20+ years outdated, ! `2 V4 ?/ I. v- A! ^1 s
these data do not account for any particularities of a machining operation including / O' x3 @7 r$ i- i
a particular grade of tool material, the condition of the machine used, the cutting , R) K+ M+ C* \0 v! ~+ S7 r
fluid, properties and metallurgical condition of the work material, requirements to
. c# v1 i3 c3 [the integrity of the machined surface, etc. 2 r& L9 q8 u! P* n9 V+ s
Unfortunately, while today's professionals, practitioners, and students are
8 L3 L, D$ J# T$ s& binterested in cutting tool geometry, they are doomed to struggle with the confusing 5 C! H2 D9 ]# w
terminology. When one does not know what the words (terms) mean, it is easy to , P9 N( w' c1 M; B* _. f( A6 q
slip into thinking that the matter is difficult, when actually the ideas are simple,
8 r/ |. |" ~8 g% T2 n/ ceasy to grasp, and fun to consider. It is the terms that get in the way, that stand as a ' m- J% X! {1 B' t  q1 f$ S& Z4 l
wall between many practitioners and science. This books attempts to turn those
1 g/ O) D7 Q9 z/ l2 \8 {3 awalls into windows, so that readers can peer in and join in the fun of proper tool
) v% o' _" l: vdesign.
) L9 ~1 r# r/ G5 ~So, why am I writing this book? There are a few reasons, but first and foremost, 1 i, s0 r$ u0 F
because I am a true believer in what we call technical literacy. I believe that
1 h( v5 P1 b. r3 t% A# O8 yeveryone involved in the metal cutting business should understand the essence and , H  P+ y$ P+ o* J4 C) e# V" x
importance of cutting tool geometry. In my opinion, this understanding is key to
* M- c" B' X7 x; ]4 G9 \improving efficiency of practically all machining operations. For the first time, this , ]! L2 a8 e- m1 p2 q6 p
book presents and explains the direct correlations between tool geometry and tool
) |4 M) g! n  [& G/ V  h7 `: a$ o9 R0 iperformance. The second reason is that I felt that there is no comprehensive book
( t+ w* y: ?3 n1 x& C4 ~" bon the subject so professionals, practitioners, and students do not have a text from
5 C, ?2 ^* X( C- m3 @' ~- Fwhich to learn more on the subject and thus appreciate the real value of tool + O8 ~% z/ X: L2 X  h# `8 _8 p) @3 z. l
geometry. Finally, I wanted to share the key elements of tool geometry that I felt
* `' I4 u, p( }were not broadly understood and thus used in the tool design practice and in 3 b/ r0 m9 I, H* r& ]+ n& K+ w. F. a7 [
optimization of machining operations in industry. Moreover, being directly
9 T2 H) W8 j1 k& }! M* einvolved in the launch of many modern manufacturing facilities equipped with / a" e$ i5 K. x
state-of-the-art high-precision machines, I found that the cutting tool industry is not 3 U+ a1 `7 r# y
ready to meet the challenge of modern metal cutting applications. One of the key
* E3 N' X9 X" n5 d3 N% u6 nissues is the definite lack of understanding of the basics of tool geometry of 0 _5 m3 r3 h# q3 S: p% m9 |9 q
standard and application-specific tools.
: a* K8 [/ Z& @$ P0 X5 Q1 JThe lack of information on cutting tool geometry and its influence on the : ?( z: Y, T' E4 O. Q
outcome of machining operations can be explained as follows. Many great findings
( x: q7 j6 \. B( g. e( Ion tool geometry were published a long time ago when neither CNC grinding
* `! q+ W! ?, u$ a5 l. @machines capable of reproducing any kind of tool geometry were available nor
" ]+ k- v) I6 X, Dwere computers to calculate parameters of such geometry (using numerical   D% F* G2 W+ E
methods) common. Manual grinding using standard 2- and 3-axis simple grinding
/ q& j% P8 U& M- e9 Tfeatures was common so the major requirement for tool geometry was the simpler
& N) y$ L' R5 _4 D, N5 A1 T3 L4 Nthe better. Moreover, old, insufficiently rigid machines, aged tool holders and part
: r$ `5 c, z' ?& z5 |/ afixtures, and poor metal working fluid (MWF) selection and maintenance levered
2 X+ D# [( x: b, @" L6 |+ v3 Kany advancement in tool geometry as its influence could not be distinguished under
) {3 h3 k! K4 P3 dthese conditions. Besides, a great scatter in the properties of tool materials in the
( D2 u& n0 `6 F2 Ypast did not allow distinguishing of the true influence of tool geometry. As a result,
3 s8 P1 q. H' ?; c* @6 h; [6 istudies on tool geometry were reduced to  theoretical considerations of features of
, ?- e' s- I# Y) e" N, E* i5 Z9 ?twist drills and some gear manufacturing  tools such as hobs, shaving cutters,
' ], G7 x2 I! rshapers, etc.  
) M8 k# X5 P, |% R0 [! Q7 FGradually, once mighty chapters on tool geometry in metal cutting and tool
$ f* v) `5 N* R% n7 }design books were reduced to sections of few pages where no correlation between 7 D# g/ C- z9 @$ d, o  s
tool geometry and tool performance is normally considered. What is left is a
/ S8 Q: p, B  m  @: {general perception that the so-called “positive geometry” is somehow better than
  v6 P1 y$ D* d# `) y' w“negative geometry.” As such, there is no quantitative translation of the word
- P1 H$ H9 H" d7 P5 @“better” into the language  of technical data although a great number of articles
1 E" @# f4 L) c- q0 I  |written in many professional magazines discuss the qualitative advantages of : `9 F' ?: b' o& S8 ?
“positive geometry.” For example, one popular manufacturing magazine article
& Y9 y* _! D) q6 Y6 n( Gread “Negative rake tools have a much  stronger leading edge and tend to push 3 [$ G& v0 R5 \! c5 F% D" j( P
against the workpiece in the direction of the cutter feed. This geometry is less free
$ ^  v/ y5 g+ e- S3 Dcutting than positive rakes and so consumes more horsepower to cut.” Reading 0 Z# V. e! s3 k( x8 \/ b+ ?
these articles one may wonder why cutting tool manufacturers did not switch their / l1 g" Q* |7 I, S
tool designs completely to this mysterious “positive geometry” or why some of / i; E  b9 b& G. Y( R$ R
them still investigate and promote negative geometry.
0 n# a) e2 E" B2 W" iDuring recent decades, the metalworking industry underwent several important 5 H& T' w$ T; ]5 ^5 {) ?
changes that should bring cutting tool geometry into the forefront of tool design
5 I- G1 C/ g  Y. \- ~( eand implementation:
回复 支持 反对

使用道具 举报

 楼主| 发表于 2011-6-24 22:03:42 | 显示全部楼层
1   What Does It Mean “Metal Cutting”? ...........................................................1 ( b& q; T% t* W) |/ P! E
1.1   Introduction ...............................................................................................1
$ a3 ~' G* j  c: C3 o1.2   Known Results and Comparison with Other Forming Processes ..............2 4 N/ t4 J+ c8 J! V
  1.2.1   Single-shear Plane Model of Metal Cutting ...................................2
. Q5 \. h6 K0 u5 d0 P  1.2.2   Metal Cutting vs. Other Closely Related Manufacturing  
0 ?* k  H5 a, \6 h8 p' l; { Operations .................................................................................................5
* o  b, n1 F6 `* C1.3   What Went Wrong in the Representation of Metal Cutting?...................22 2 @; U0 ~8 [# L( {3 @
  1.3.1   Force Diagram..............................................................................23
% D; \; M5 `! B, g+ H/ V  1.3.2   Resistance of the Work Material in Cutting.................................25 4 E' d' Z2 V3 K# b$ d8 x& g0 @
  1.3.3   Comparison of the Known Solutions for the Single-shear  6 K+ w: V) S' _" I: V: Q% X* z
  Plane Model with Experimental Results .................................................27 % j" j) z% x4 c- o
1.4   What is Metal Cutting?............................................................................28
% e# z0 @6 |8 n  a/ r$ q! `  1.4.1   Importance to Know the Right Answer........................................28
) n2 S5 i9 {3 g3 f 1.4.2  Definition .....................................................................................28
+ Y- w6 B9 e& ^. c( [  1.4.3   Relevance to the Cutting Tool Geometry.....................................29
! f  s" c0 F& P+ k9 ]8 x8 c0 Z/ S1.5   Fundamental Laws of Metal Cutting.......................................................32 1 t$ t2 F3 x3 g" x* d3 E
  1.5.1   Optimal Cutting Temperature – Makarow’s Law........................32
# g2 o) R% ~. [3 l 1.5.2  Deformation Law.........................................................................35 / B' {$ {, Q% z* |" d, Z
References........................................................................................................50
2 ?1 d# T* c9 @3 [: \; w 2   Basic Definitions and Cutting Tool Geometry,  5 A/ a6 b/ A" F( b
Single Point Cutting Tools ............................................................................55
" Q) l7 _, L+ c" |3 O3 Z' h2.1   Basic Terms and Definitions ...................................................................55
+ z7 T/ Y1 W2 g- R/ R3 B/ o1 ] 2.1.1  Workpiece Surfaces.......................................................................57 ' l  W" a7 t/ D& d. E$ a; V# n& J
2.1.2  Tool Surfaces and Elements ..........................................................57 : K6 z. o9 t$ l
2.1.3  Tool and Workpiece Motions.......................................................57
1 D" B2 z2 X. i# K0 }* S6 e5 m. ? 2.1.4  Types of Cutting ............................................................................58 ! @$ o; i( y; q' ]
2.2   Cutting Tool Geometry Standards...........................................................60
$ V, k: |! S) X0 w6 L( }2.3   Systems of Consideration of Tool Geometry ..........................................61 $ ]8 n5 I3 E. d2 u9 c
2.4.  Tool-in-hand System (T-hand-S) .......................................................64
# n$ Y2 c" l* Y: I8 {. a  2.4.1   Tool-in-hand Coordinate System.................................................64 0 Q1 p* Q' N7 K: l3 M
2.4.2  References Planes ........................................................................66 8 M, U% X/ j' [7 h1 A
2.4.3  Tool Angles..................................................................................68
! n2 @# @4 Y9 T' s: ~4 w5 e  2.4.4   Geometry of Cutting Tools with Indexable Inserts ......................74
4 F& |) x# m0 T7 i3 }! |2.5   Tool-in-machine System (T-mach-S)......................................................84
7 l. g% ^0 n: u 2.5.1  Angles ..........................................................................................84
% G5 ]9 v. Z+ }$ d; T  2.5.2   Example 2.3 .................................................................................88
. {2 E7 E6 ]) `0 f2.6   Tool-in-use System (T-use-S) .................................................................90 ' k9 e1 f& o* G9 c1 ?  N) d$ R
2.6.1  Reference Planes ..........................................................................91
2 g4 [8 w+ S1 B) t6 \1 h 2.6.2  The Concept .................................................................................92
9 ^$ ?+ K) x0 g* }  2.6.3   Modification of the T-hand-S Cool Geometry .............................92
0 J8 \$ B) p1 p$ {9 j" C- y  2.6.4   Kinematic Angles.........................................................................98 ( E3 [" |/ I4 M: u
  2.6.5   Example 2.4 ...............................................................................100
. z7 R: V' f. Z' a4 z2.7   Avalanched Representation of the Cutting Tool Geometry  5 W" O; v3 X/ n: q7 C& _  E  ~
in T-hand-S............................................................................................102 / x; j# U. M- @9 H7 ^) ^
2.7.1  Basic Tool Geometry .................................................................102
; y$ v# o7 i5 {4 }2.7.2   Determination of Cutting Tool Angles Relation & F7 G, Q) x# \7 L5 G" G( f9 d
  for a Wiper Cutting Insert ..........................................................108 . j; b* Q% E3 Y& X  d+ i
  2.7.3   Determination of Cutting Tool Angles  + s* F( y$ K! O1 a
   for a Single-point Tool ...............................................................110 6 j& N6 ~$ e$ f. _' I
  2.7.4   Flank Angles of a Dovetail Forming Tool .................................117 # f, H8 {# Z& F5 b: ]/ @/ g" z
  2.7.5   Summation of Several Motions..................................................119 2 i" H# V9 u. X* Y3 ^
References......................................................................................................125 " F' N* C! I% X& b& W6 w; a& p, K
3  Fundamentals of the Selection of Cutting Tool Geometry Parameters...127 . }' j8 H( l$ ?  g) x5 b$ ]# f
3.1   Introduction ...........................................................................................127
: K% t' P% K9 v* _8 ^3.2   General Considerations in the Selection of Parameters  
6 Z) [6 |- Q3 H  of Cutting Tool Geometry .....................................................................129
7 I" J; p* S6 `) M6 f 3.2.1 Known Results .............................................................................129 5 z" _1 {) O$ Y& \
  3.2.2 Ideal Tool Geometry and Constrains............................................130
! P- e$ R4 C0 {. H# |' b5 q( z4 p  3.2.3 Practical Gage for Experimental Evaluation of Tool Geometry...132 8 g4 E/ r9 m9 K6 o; E: O
3.3   Tool Cutting Edge Angles .....................................................................132 ; q; T* o% q% Y' I
3.3.1  General Consideration................................................................132
1 F# W6 \5 t. c5 v: E- g4 z1 N  3.3.2   Uncut ChipT in Non-free Cutting ..............................................134 . `! Q+ v. j* |/ J2 I. b
  3.3.3   Influence on the Surface Finish..................................................142
- o% a" o) n6 }5 B2 c; ]# j' C* Z 3.3.4  Tools with κr > 90°.....................................................................144 + o0 ^% {. \* E/ {. R
  3.3.5   Tool Minor Cutting Edge Angle ................................................147
: ?, e: q- _, S% c- M  m  Z; M3.4.  Edge Preparation ...................................................................................161 : `  x2 v6 w/ d" c: M( \7 ~) ~
3.4.1  General .......................................................................................161 ; e6 i* z4 Q3 E$ V5 ?2 D( l- K
  3.4.2   Shape and Extent........................................................................163
& o# ]% E$ p0 `8 b 3.4.3  Limitations .................................................................................163 % O$ g7 z( K( U6 v
  3.4.4   What Edge Preparation Actually Does.......................................169 3 W7 I  f! W7 `" U% i
3.5   Rake Angle............................................................................................171
  |: x3 ~: b- \0 U( m- L$ |% G# W 3.5.1  Introduction................................................................................171
1 M& g! D, `6 ]& S& D8 T$ {; ^  3.5.2   Influence on Plastic Deformation and Generazliations ..............175
8 e5 c. s2 i8 c0 C: m+ ?7 Q  3.5.3   Effective Rake Angle .................................................................183
; O9 R( ^1 B( f7 z+ W  3.5.4   Conditions for Using High Rake Angles....................................189
8 {# F1 E" S9 u7 _- t3.6   Flank Angle ...........................................................................................191 3 V3 ~( U( ^3 h' h
3.7   Inclination Angle...................................................................................193 0 c7 u' p$ }4 {9 @9 M
      3.7.1   Turning with Rotary Tools.........................................................195
9 |( Z* D/ t( c5 Z2 O+ m; ~ 3.7.2  Helical Treading Taps and Broaches..........................................197
* Y# R$ P( o( M. I4 l" W 3.7.3  Milling Tools..............................................................................198 + |3 l7 M# k. e2 J
References......................................................................................................201
4 a0 Z! ]6 V! t/ n- {% a4   Straight Flute and Twist Drills ...................................................................205 9 v* L7 p3 O9 h2 r
4.1   Introduction ...........................................................................................205 : u- S' J9 Y4 c9 j7 D- D
4.2   Classification.........................................................................................206
6 `3 s; y( V5 f4 S- y8 F6 p4.3   Basic Terms...........................................................................................208 0 d! [2 n9 t9 D0 C' A5 U
4.4   System Approach ..................................................................................211 ) R4 {' m' a" w! Q
4.4.1  System Objective .......................................................................212 $ C. x' j* Y: t1 V& D2 X
4.4.2  Understanding the Drilling System............................................212
. ?) k5 z: a- Z8 o& I2 J5 ]1 Q  4.4.3.  Understanding the Tool..............................................................212 4 ^  E$ I: e" U7 ~' A
4.5.  Force System Constrains on the Drill Penetration Rate ........................213 0 T% ?" m* _$ p3 Q! i( _, {
  4.5.1   Force-balance Problem in Conventional Drills ..........................213
# b8 g. \: N9 n- s  4.5.2   Constrains on the Drill Penetration Rate....................................218
, j2 U- J+ N  ?( h, u: G3 B 4.5.3  Drilling Torque ..........................................................................219 9 q" |% N9 f$ o& D# D7 E
4.5.4  Axial Force.................................................................................220
# M5 l/ m( K0 ^" ~# l( m  4.5.5   Axial Force (Thrust)-torque Coupling .......................................221
& a1 p  J  W, X# J4.6   Drill Point ..............................................................................................223 / h7 S5 k2 z/ r8 D" T' b) L& H$ E4 I
4.6.1  Basic Classifications ..................................................................223 ( ?4 ]& s( Y7 ^& f. E# O" [& o/ Y! \
  4.6.2   Tool Geometry Measures to Increase the Allowable  ( f8 k" ^% Q" z6 t
Penetration Rate ....................................................................................224
% t8 S  H  D* c( n# R% y: ^) c, h4.7   Common Design and Manufacturing Flaws..........................................259
/ ^1 o* ?( F  |: O/ ^  4.7.1   Web Eccentricity/ Lip Index Error.............................................260 $ h1 S3 k2 Q7 K0 {
  4.7.2   Poor Surface Finish and Improper Tool Material/Hardness.......261
+ ~. Q2 _! }1 W 4.7.3  Coolant Hole Location and Size.................................................263 0 A3 Y+ W: V+ E/ p0 i/ C' G" {
4.8   Tool Geometry ......................................................................................267
+ t6 P: I( u! f5 |1 F  4.8.1   Straight-flute and Twist Drills Particularities............................269 5 j% J, `& b, C0 g. n. _  Z
  4.8.2   Geometry of the Typical Drill Point ..........................................270 1 ~$ N) E" u# o
  4.8.3   Rake Angle.................................................................................272 1 b+ u7 U; m7 A$ W
  4.8.4  Inclination Angle .........................................................................280
7 n  K% J7 C0 j) J+ a0 t 4.8.5  Flank Angle................................................................................281
1 ^3 L2 d) h' q8 ^  4.8.6   Geometry of a Cutting Edge Located at an Angle  ) i* a' i& ^) J# h
   to the y0-plane ............................................................................292 2 w5 r: |; ^. L
4.8.7  Chisel Edge ................................................................................295 6 V  n! W7 A+ z1 |' ?
  4.8.8   Drill Flank is Formed by Two Planes: Generalization...............306
" b. ?% O$ ?6 A  4.8.9   Drill Flank Angle Formed by Three Planes ...............................310 0 Q  W9 [5 `0 X8 g) S
4.8.10  Flank Formed by Quadratic Surfaces.........................................313 / f5 P) b  z/ v' E
4.9   Load Over the Drill Cutting Edge .........................................................324 + A9 l: {( ^: P4 B- ?8 s, k; R
   4.9.1   Uncut Chip Thickness in Drilling ..............................................325 " {& B- E4 s$ v" d
  4.9.2   Load Distribution Over the Cutting Edge ..................................327 . o6 ]8 @( O5 J' d8 ?! E
4.10  Drills with Curved and Segmented Cutting Edges ................................328
' a& }; O7 G% T% v2 q, i$ x  4.10.1 Load of the Cutting Part of a Drill with Curved Cutting Edges .329 6 l$ d" f: G# V* L/ O
  4.10.2 Rake Angle.................................................................................332
% a; j7 }1 ]8 j4 O" t, o  G% I( {References......................................................................................................337
5 [1 a6 W4 p+ P7 L$ d' ^5   Deep-hole Tools............................................................................................341 ) y8 Z1 P6 A, |3 C
5.1   Introduction ...........................................................................................341
( N7 j/ R7 k# L6 o( X0 h5.2   Generic Classification of Deep-hole Machining Operations.................343 ( P& _: E# C3 P1 V) Y. h
5.3   What Does ‘Self-piloting Tool’ Mean? .................................................345 7 k/ V4 j! q# z$ k' e9 A
  5.3.1   Force Balance in Self-piloting Tools..........................................345 7 T* m% p8 ?5 {, J8 r
5.4   Three Basic Kinematic Schemes of Drilling .........................................350
) K1 V9 B4 Y/ {1 C- s. c  Z  5.4.1   Gundrill Rotates and the Workpiece is Stationary .....................351
5 a4 `, W1 Y+ u8 P  D 5.4.2  Workpiece Rotates and the Gundrill is Stationary .....................352
2 m# Y" i" y  ~0 ^% a* k" w 5.4.3  Counterrotation ..........................................................................352
/ M7 N  M+ M. A- ~5.5   System Approach ..................................................................................353
% A. W6 Q% m  u. T% e/ y  5.5.1   Handling Tool Failure ................................................................353 - V  I9 w7 V, F* v
5.5.2  System Considerations ...............................................................354
# D) u9 @; P+ X1 h' F5.6   Gundrills................................................................................................362 6 C  |' U$ W; _& G2 I
5.6.1  Basic Geometry..........................................................................362 # L3 ?, K- _6 U( z
5.6.2  Rake Surface ..............................................................................365
' ]' V$ ^5 e0 ^. ?/ ~  5.6.3   Geometry of Major Flanks .........................................................370 ( F* {9 y0 W$ D0 l: [7 _+ @4 Y/ Y- w
5.6.4  System Considerations in Gundrill Design ................................390 0 |& u4 V8 }. g, x6 u2 K' D
5.6.5   Examplification of Significance of the High MWF Pressure
# H  i& n' G. L$ b3 T  in the Bottom Clearance Space ..................................................423 , d- h- e2 t+ M: d
  5.6.6   Example of Experimental Study ................................................425 5 ]8 |4 z: g4 p! }0 b
  5.6.7   Optimization of Tool Geometry.................................................439
6 e4 Q. H3 v9 t' r' r, G% dReferences......................................................................................................440 / `1 d4 G& l8 D' e. e+ k- D% P' D
Appendix A  ; l  V  {0 C4 U; _/ w& o
Basic Kinematics of Turning and Drilling.......................................................443 % E4 K" G% m7 ?' b; K) A6 {, d- `5 p
A.1   Introduction ...........................................................................................443 & G/ d' G' x# Z2 |
A.2  Turning and Boring ...............................................................................444   G. \& k" l' N8 k6 Z7 ?
  A.2.1  Basic Motions in Turning...........................................................444
0 }8 u* K- ]7 G2 Q6 G! m  A.2.2  Cutting Speed in Turning and Boring ........................................448 + ]9 J; R# m4 r$ i# ?
  A.2.3  Feed and Feed Rate ....................................................................448
0 J4 U* K7 ?* r  A.2.4  Depth of Cut...............................................................................449 2 K+ g' f' w& U3 x
A.2.5  Material Removal Rate ..............................................................449   s8 X% T' X% a9 Z% [+ A
A.2.6  Resultant Motion........................................................................450 4 F8 W& D( V) R8 f
A.3  Drilling and Reaming ............................................................................450
: L/ S0 \, l. u5 h A.3.1  Basic Motions in Drilling...........................................................450   n( b* |7 s: F3 f) A' c8 m
A.3.2  Machining Regime.....................................................................451 0 t' ^7 ]  e4 D! }+ ~: `3 Q9 @
A.4  Cutting Force and Power .......................................................................453 2 Q2 O- [4 _7 g, u" {. l; M
  A.4.1  Force System in Metal Cutting...................................................453 % S) X5 N. R4 r) U
  A.4.2  Cutting Power ............................................................................454 & l5 A* ~' F- s) G
A.4.3  Practical Assessment of the Cutting Force.................................455
* r, a3 S1 h- L5 H& g: MReferences......................................................................................................461 ; |  h. y& m4 b. e) U
Appendix B  
2 K6 ^; Z- f8 y3 ^) yANSI and ISO Turning Indexable Inserts and Holders.................................463
0 @6 U% g) i. E3 PB.1   Indexable Inserts ...................................................................................463
  ~! y8 j0 A* e- m  B.1.1  ANSI Code .................................................................................464 / j! {- L3 i4 E& z' Y, K
B.1.2  ISO Code....................................................................................471
# u# Z  S$ M6 _; G7 Y5 j, u  B.2 Tool Holders for Indexable Inserts (Single Point Tools) ......................491   p- a) L. g: Y
  B.2.1   Symbol for the Method of Holding Horizontally Mounted  4 H2 \1 C- p# d1 X2 v
Insert – Reference Position (1) ..............................................................492
; C; \; V, c2 M" S: b0 i( x  B.2.2   Symbol for Insert Shape – Reference Position (2) .....................493 2 d6 o' ^1 [9 E/ u5 O; W
  B.2.3   Symbol for Tool Style – Reference Position (3) ........................493 7 y4 K% D; u0 i
  B.2.4   Letter Symbol Identifying Insert Normal Clearance –  : N! q9 `  y7 n+ d3 l. D
   Reference Position (4)................................................................494
1 B, N1 ?+ X# e0 r& ]  B.2.5   Symbol for Tool Hand – Reference position (5) ........................494
, @. ^1 Y7 [  n" e  B.2.6  Symbol for Tool Height (Shank Height of Tool Holders  1 [0 U/ F' z8 B5 ~4 K) f( x( |3 g
    and Height of Cutting Edge) - Reference Position (6) ...............494 % i- t1 G( i" q& r
  B.2.7  Number Symbol Identifying Tool Holder Shank Width –  
; i, k: z5 O+ a/ Z+ n! j   Reference Position (7)................................................................495 1 L0 e, w* y9 @7 E2 w- F! v
  B.2.8  Number Symbol Identifying Tool Length –  # O+ y' P& _9 j: M
   Reference Position (8)................................................................495
& c3 W; J( V# `6 p" Z! \  B.2.9   Letter Symbol Identifying Indexable Insert Size –  
; ~8 Z  E% I# p0 T0 r4 H& g   Reference Position (9)................................................................497
9 n( {* Z- t9 k6 RAppendix C  
6 C% M5 Z$ q, P0 F! n5 ^Basics of Vector Analysis ..................................................................................499
. N4 X0 H" w0 t! H% ~C.1   Vectors and Scalars ...............................................................................499 ! W+ }( u( e. r2 M2 F' s1 K  A
C.2   Definition and Representation...............................................................500 4 P5 y  Z+ H2 C( k' q7 U' {# n
C.2.1  Definitions..................................................................................500 0 O; i2 H* i: |  Y
C.2.2  Basic Vector Operations ............................................................503
3 {, D7 x4 _; KC.3   Application Conveniences.....................................................................509
6 m9 O/ t! c2 @9 ~( g: y7 D4 @C.4  Rotation: Linear and Angular Velocities...............................................511
* P. v5 K& N2 R/ c4 K" E9 ^  C.4.1   Planar Linear and Angular Velocities ........................................511   P# J" L7 J- l# H# M
  C.4.2   Rotation: The Angular Velocity Vector .....................................515
: h2 [2 e' q  \( o5 g4 ?" AReferences ...........................................................................................................518   O: O) X3 d; t  i4 D( o$ g0 m% c
Appendix D  8 Z  x6 r( I2 g9 X$ D8 O
Hydraulic Losses: Basics and Gundrill Specifics............................................519
# b1 h) @# n6 j/ yD.1  Hydraulic Pressure Losses – General ....................................................519 2 N' v' K) J# T& W
D.1.1  Major Losses: Friction Factor ....................................................520 , a5 Y5 m/ l/ `% F+ h- f) A
  D.1.2  Minor Losses (Losses Due to Form Resistance) ........................521 6 _  b# |- n9 g: }
D.2  Concept of the Critical MWF Velocity and Flow Rate .........................521
0 Q" e0 I1 O, o; u" Y1 i, m. p4 o  D.2.1  MWF Flow Rate Needed for Reliable Chip Transportation.......522
3 a1 U. F+ c* Z  D.2.3  Example D.1...............................................................................527 & u9 ~7 z- n4 r8 O
D.3   Inlet MWF pressure...............................................................................528
( V. E2 E& K* c* C( z5 zD.4  Analysis of Hydraulic Resistances ........................................................532 9 F! I0 P# e0 |
  D.4.1  Analysis of Hydraulic Resistances Over Which the Designer  
! O( A/ R( @1 Z4 B  q    Has No or Little Control ............................................................532
: Q: A! u+ U8 M! ?( P. s7 L  D.4.2  Variable Resistances Over Which the Designer Has Control ....535 / W; P5 j7 C7 O9 U0 V% r! ^  S
D.5   Practical Implementation in the Drill Design ........................................539
4 J' q3 P( ~9 ~" gReferences ..........................................................................................................543
: m% \0 E) v; U. k' Q  y3 vAppendix E
( F5 L3 r1 J9 u+ A' _Requirements and Examples of Cutting Tool Drawings................................545
' u* k; p! d( dE.1   Introduction ...........................................................................................545 9 {" L8 F" @) d% p: Z) c5 p
E.2   Tool Drawings – the Existent Practice ..................................................546 , o8 \- E, V0 W( B7 f& ^4 x
E.3   Tool Drawing Requrements ..................................................................548
( p4 N/ z8 p2 p- N/ _  NE.4   Examples of Tool Drawing ...................................................................553
1 H: ]& Q7 v# G' N  Q; _References ..........................................................................................................559
1 P8 O, }/ q4 c+ z: t/ Q. HIndex…………………………………………………………………………….561 ! L. E$ Y9 {* s. Q+ H
, E7 b' x, V) @* ?

! x' M8 v: p' Q2 O; r( L- S) J! \
回复 支持 反对

使用道具 举报

发表于 2011-6-25 13:07:50 | 显示全部楼层
都是些神马?
回复 支持 反对

使用道具 举报

发表于 2011-6-25 13:33:41 | 显示全部楼层
埋头挖矿中。。。。。。。。。
回复 支持 反对

使用道具 举报

发表于 2011-6-26 15:14:56 | 显示全部楼层
好东西啊。。。只是,刀具不是我的工作。。。顶起,不沉。。。
回复 支持 反对

使用道具 举报

 楼主| 发表于 2011-6-26 18:10:54 | 显示全部楼层
专业人士自有看法。
回复 支持 反对

使用道具 举报

发表于 2011-6-27 18:42:38 | 显示全部楼层
好东西啊,英文的,看着太费劲了
回复 支持 反对

使用道具 举报

发表于 2011-6-27 21:53:22 | 显示全部楼层
从网上查找这本书是Springer Series in Advanced Manufacturing丛书中的一本
; i3 h; _$ u$ m6 f) O# a请问这套丛书共包含哪几本书
回复 支持 反对

使用道具 举报

您需要登录后才可以回帖 登录 | 注册会员

本版积分规则

小黑屋|手机版|Archiver|机械社区 ( 京ICP备10217105号-1,京ICP证050210号,浙公网安备33038202004372号 )

GMT+8, 2024-5-3 14:48 , Processed in 0.062502 second(s), 19 queries , Gzip On.

Powered by Discuz! X3.4 Licensed

© 2001-2017 Comsenz Inc.

快速回复 返回顶部 返回列表