找回密码
 注册会员

QQ登录

只需一步,快速开始

搜索
查看: 8661|回复: 19

Geometry_of_Single_point_Turning_Tools_and_Drills

 火.. [复制链接]
发表于 2011-6-23 22:58:22 | 显示全部楼层 |阅读模式
本帖最后由 机器鼠 于 2011-6-23 23:18 编辑 ( P$ o$ F9 s$ w/ `' C  k6 G3 A

: F" }) I0 m# \% j7 M, cGeometry_of_Single_point_Turning_Tools_and_Drills__Fundamentals_and_Practical_Applications.pdf1 A7 m9 F0 a; j/ y# |, C
有要的吗?刀具,细节,很到位。英文版。
6 Q3 \# o/ |+ t国内无人这么细研究的吧?

Geometry_of_Single_point_Turning_Tools_and_Drills__Fundamentals_and_Practical_Ap.rar

4.35 MB, 阅读权限: 90, 下载次数: 8, 下载积分: 威望 -10 点

7

Geometry_of_Single_point_Turning_Tools_and_Drills__Fundamentals_and_Practical_Ap.rar

4.35 MB, 下载次数: 7, 下载积分: 威望 -10 点

6

Geometry_of_Single_point_Turning_Tools_and_Drills__Fundamentals_and_Practical_Ap.rar

4.35 MB, 下载次数: 8, 下载积分: 威望 -10 点

5

Geometry_of_Single_point_Turning_Tools_and_Drills__Fundamentals_and_Practical_Ap.rar

4.35 MB, 下载次数: 6, 下载积分: 威望 -10 点

4

Geometry_of_Single_point_Turning_Tools_and_Drills__Fundamentals_and_Practical_Ap.rar

4.35 MB, 下载次数: 6, 下载积分: 威望 -10 点

3

Geometry_of_Single_point_Turning_Tools_and_Drills__Fundamentals_and_Practical_Ap.rar

4.35 MB, 下载次数: 6, 下载积分: 威望 -10 点

2

Geometry_of_Single_point_Turning_Tools_and_Drills__Fundamentals_and_Practical_Ap.rar

140.75 KB, 阅读权限: 90, 下载次数: 7, 下载积分: 威望 -10 点

1

回复

使用道具 举报

发表于 2011-6-24 19:17:16 | 显示全部楼层
说什么的?
 楼主| 发表于 2011-6-24 22:02:25 | 显示全部楼层
Although almost any book and/or text on metal cutting, cutting tool design, and
2 a' t0 L' ~9 T  ?1 Amanufacturing process discusses to a certain extent the tool geometry, the body of 7 w+ ^9 j5 K3 u: y0 G5 Z+ T# z
knowledge on the subject is scattered and  confusing. Moreover, there is no clear
/ a* d- I8 E% N9 h1 u2 x. R# F8 mobjective(s) set in the selection of the tool geometry parameters so that an answer
! |6 }7 W; A, s/ J1 Y- M' t0 fto a simple question about optimal tool geometry cannot be found in the literature
, V" ]1 w, W6 ]: Kon the subject. This is because a criterion (criteria) of optimization is not clear, on
- |5 e! [! f/ n+ s  u% n% Tone hand, and because the role of cutting tool geometry in machining process
* ~; U3 c$ G) }optimization has never been studied systematically, on the other. As a result, many # _2 R1 }+ v# Z' b  t# w6 ]
practical tool/process designers are forced to use extremely vague ranges of tool $ O% m9 p/ k$ o+ b: v  B
geometry parameters provided by handbooks. Being at least 20+ years outdated,
# e) W7 G: v4 \+ y4 fthese data do not account for any particularities of a machining operation including
3 B5 a) _/ K9 Z. e7 e6 o% c- za particular grade of tool material, the condition of the machine used, the cutting ) q( \2 K) `" _  l2 n
fluid, properties and metallurgical condition of the work material, requirements to
/ g6 o5 o2 \1 z+ D! G) ?the integrity of the machined surface, etc. ' F' w  I$ L5 q5 _5 z
Unfortunately, while today's professionals, practitioners, and students are
/ A8 z5 S' D( b4 i" Linterested in cutting tool geometry, they are doomed to struggle with the confusing 2 m2 Z- Q2 A! W
terminology. When one does not know what the words (terms) mean, it is easy to
$ W4 L& g; c! [9 Hslip into thinking that the matter is difficult, when actually the ideas are simple,
6 M+ H( g0 H; B- ~6 \. w  O; Yeasy to grasp, and fun to consider. It is the terms that get in the way, that stand as a
$ a9 d. S4 U; k  s, \! Uwall between many practitioners and science. This books attempts to turn those 6 k: n. a. X0 N' X4 p; `* ~) i
walls into windows, so that readers can peer in and join in the fun of proper tool ) u1 O3 l8 W; B7 T! R0 e% ~, I
design.
% v: B) S! Q! Z+ X: OSo, why am I writing this book? There are a few reasons, but first and foremost,
0 M0 x* r  Z' Mbecause I am a true believer in what we call technical literacy. I believe that
+ _9 l. B% D7 T: H# ^4 j* t6 heveryone involved in the metal cutting business should understand the essence and
2 G" R8 x. g7 C. z% yimportance of cutting tool geometry. In my opinion, this understanding is key to
9 b" j* i. ?+ k7 j2 gimproving efficiency of practically all machining operations. For the first time, this
- r5 v, G/ O4 u( S8 n# tbook presents and explains the direct correlations between tool geometry and tool " ~0 G  Z  t9 ?- R
performance. The second reason is that I felt that there is no comprehensive book 9 \  T7 }8 l4 y# E/ Q
on the subject so professionals, practitioners, and students do not have a text from
0 P0 Q7 @8 [" u& Z$ d. U8 |which to learn more on the subject and thus appreciate the real value of tool
% Z4 w7 F, r0 C1 _. k  d( fgeometry. Finally, I wanted to share the key elements of tool geometry that I felt ( B) r' b) M: [+ {! d
were not broadly understood and thus used in the tool design practice and in " s0 N' h- b% O; W! S$ Q4 k
optimization of machining operations in industry. Moreover, being directly   A7 m. o; E/ ]  ], ]+ ]7 ^
involved in the launch of many modern manufacturing facilities equipped with
9 [0 i! Q2 V2 p6 I) O. Ostate-of-the-art high-precision machines, I found that the cutting tool industry is not
5 z/ @& ]+ J# [2 m2 Yready to meet the challenge of modern metal cutting applications. One of the key
6 R. G2 O7 g" {" t6 l' qissues is the definite lack of understanding of the basics of tool geometry of
) l" U% B  z  a1 pstandard and application-specific tools.
& v0 o' b) @* x) l0 @! r# w" iThe lack of information on cutting tool geometry and its influence on the 9 r8 @! K2 i5 r+ o- [- T6 h6 K1 V
outcome of machining operations can be explained as follows. Many great findings * h) q( F$ J2 W: j+ I
on tool geometry were published a long time ago when neither CNC grinding
0 Z8 I! A4 X+ D; I* c6 O+ Emachines capable of reproducing any kind of tool geometry were available nor & \' _- T+ r  @  s+ k
were computers to calculate parameters of such geometry (using numerical 7 w  {% w& d/ G. V" i3 @5 e
methods) common. Manual grinding using standard 2- and 3-axis simple grinding
- m9 H' N0 @) M9 U" Qfeatures was common so the major requirement for tool geometry was the simpler
4 f0 I. Y1 m+ W/ rthe better. Moreover, old, insufficiently rigid machines, aged tool holders and part
# w) ?+ N' j* `6 M- W* @. wfixtures, and poor metal working fluid (MWF) selection and maintenance levered " h" Z7 {/ H7 U) H+ z
any advancement in tool geometry as its influence could not be distinguished under 0 S+ R( N: O7 W+ D
these conditions. Besides, a great scatter in the properties of tool materials in the
$ z- l; K* U; q: Q4 a  Tpast did not allow distinguishing of the true influence of tool geometry. As a result,
( b0 R$ v) @8 O6 C# t: o' \studies on tool geometry were reduced to  theoretical considerations of features of ; y& j  L+ E; a0 v+ }' j5 E' k
twist drills and some gear manufacturing  tools such as hobs, shaving cutters, ' x7 C" _  L2 n. e& k! U
shapers, etc.  % D2 r7 g. t) t1 @
Gradually, once mighty chapters on tool geometry in metal cutting and tool
9 [+ K$ C0 m+ c& @6 U# @4 Hdesign books were reduced to sections of few pages where no correlation between 2 R  r& O* w: @" C: l; v' j
tool geometry and tool performance is normally considered. What is left is a
/ h. Q2 {+ D7 F0 @, \# pgeneral perception that the so-called “positive geometry” is somehow better than
# d$ s: r) x6 C; r4 |' i9 i“negative geometry.” As such, there is no quantitative translation of the word
- o2 [+ K: q! {. B3 @1 P“better” into the language  of technical data although a great number of articles ' K5 |) l. y3 B' m# y
written in many professional magazines discuss the qualitative advantages of
) l5 W2 G# `. x# u* z8 `9 B% a4 p“positive geometry.” For example, one popular manufacturing magazine article
8 [; p- M2 `% Q# e& }' D* I) q6 yread “Negative rake tools have a much  stronger leading edge and tend to push $ p+ Y+ e  V3 f0 j, G/ P% H
against the workpiece in the direction of the cutter feed. This geometry is less free
& L5 e" @  e' ]cutting than positive rakes and so consumes more horsepower to cut.” Reading 8 h$ t4 i* i" g  g! Q6 ~
these articles one may wonder why cutting tool manufacturers did not switch their
8 h: c# u" E! ]3 d: V! Ltool designs completely to this mysterious “positive geometry” or why some of
! k6 ~4 F5 m% t- jthem still investigate and promote negative geometry. ) B4 Q" c  l9 k2 o2 p; O
During recent decades, the metalworking industry underwent several important
. |: U+ u& h! V* Pchanges that should bring cutting tool geometry into the forefront of tool design 4 a% ]3 t5 P& E1 A) |0 N
and implementation:
 楼主| 发表于 2011-6-24 22:03:42 | 显示全部楼层
1   What Does It Mean “Metal Cutting”? ...........................................................1
! d+ e! z* ], ~1.1   Introduction ...............................................................................................1 1 Y3 g" S0 [- |: z7 d8 U& X- R
1.2   Known Results and Comparison with Other Forming Processes ..............2
% w* b6 a5 M8 l; w# {8 [& {9 k  1.2.1   Single-shear Plane Model of Metal Cutting ...................................2 6 k0 x& K6 Z4 h, y9 Z; _0 g& ?
  1.2.2   Metal Cutting vs. Other Closely Related Manufacturing  4 Y( R+ V& d" v. L! C. ?$ a
Operations .................................................................................................5
/ g% n; r/ N: E6 W; s( k4 h6 H1.3   What Went Wrong in the Representation of Metal Cutting?...................22 " W( a8 E: b+ c+ x, G; Z
  1.3.1   Force Diagram..............................................................................23 2 o! |! k5 Z) e% `3 p
  1.3.2   Resistance of the Work Material in Cutting.................................25 8 H- j  g: }3 i3 T$ I% }* \
  1.3.3   Comparison of the Known Solutions for the Single-shear  7 m, K0 Z1 h: v1 `0 D# P
  Plane Model with Experimental Results .................................................27 - k( s  w4 Y# v7 F# R( |/ W  G- o) r
1.4   What is Metal Cutting?............................................................................28
) k1 l3 D2 _* b' ^$ [+ P, e  1.4.1   Importance to Know the Right Answer........................................28
& T" D! U) Q% V4 c' ]/ M! O. Z 1.4.2  Definition .....................................................................................28 5 i6 J) M4 z8 M. ~
  1.4.3   Relevance to the Cutting Tool Geometry.....................................29
, W( \* O: h# K1.5   Fundamental Laws of Metal Cutting.......................................................32 " v+ C0 x# G2 [2 Q0 X, f% S+ S
  1.5.1   Optimal Cutting Temperature – Makarow’s Law........................32 ! v0 ~% w& h5 i$ P
1.5.2  Deformation Law.........................................................................35
# S9 ?3 B. [7 j) o! r1 |References........................................................................................................50 * W  K9 e( ]7 F$ a- \  f- k
2   Basic Definitions and Cutting Tool Geometry,  , {3 m; s  Y& T  i
Single Point Cutting Tools ............................................................................55
2 i) s: t! |4 `* x2.1   Basic Terms and Definitions ...................................................................55
; ~) Z& d" U7 ~7 ?& R 2.1.1  Workpiece Surfaces.......................................................................57 + j0 w( u- W8 S
2.1.2  Tool Surfaces and Elements ..........................................................57
/ D7 B. _; _8 c 2.1.3  Tool and Workpiece Motions.......................................................57
( ]; I; p! F( \% j  E6 S" W# y 2.1.4  Types of Cutting ............................................................................58 # h. T5 _8 N. F6 O
2.2   Cutting Tool Geometry Standards...........................................................60
5 z2 I2 B  M3 J( y0 X3 U! C! z2.3   Systems of Consideration of Tool Geometry ..........................................61
8 p/ z6 s. N; Q, ^2.4.  Tool-in-hand System (T-hand-S) .......................................................64, ~% H% W( P3 {, m; j. G- s
  2.4.1   Tool-in-hand Coordinate System.................................................64
, ?+ `$ H# ^, i0 h/ S 2.4.2  References Planes ........................................................................66
. v$ n- Q5 B  x 2.4.3  Tool Angles..................................................................................68 6 i# k' z: y! e2 t1 W
  2.4.4   Geometry of Cutting Tools with Indexable Inserts ......................74
  i( g4 f, w  |8 \* X) }4 L8 ?2.5   Tool-in-machine System (T-mach-S)......................................................84 ' X( C5 L& o, K/ t. p' p% |
2.5.1  Angles ..........................................................................................84 ) Q% c$ ^/ O: f5 C) i7 t$ ~; I6 I
  2.5.2   Example 2.3 .................................................................................88 % A  f5 G; E, d/ \3 e9 g& p  T, {
2.6   Tool-in-use System (T-use-S) .................................................................90 ( w. {+ r$ ]6 _0 Q1 [
2.6.1  Reference Planes ..........................................................................91 , C5 M5 O$ f: E+ _1 k: H% Z
2.6.2  The Concept .................................................................................92
. F9 R! L! b5 _. s+ Z  2.6.3   Modification of the T-hand-S Cool Geometry .............................92
/ p! w- y7 b' z' s/ v/ t$ s- i  2.6.4   Kinematic Angles.........................................................................98
; T; z" u# i) B$ ]5 S- R, w- }  2.6.5   Example 2.4 ...............................................................................100
7 E7 n6 s3 F, i' c8 |0 C& r2.7   Avalanched Representation of the Cutting Tool Geometry  , ?$ D9 ^3 ~# F! k0 B
in T-hand-S............................................................................................102
2 o3 |) Z) s) a& y# V 2.7.1  Basic Tool Geometry .................................................................102
" f$ W& ~$ a: B2 W1 t/ k0 R2.7.2   Determination of Cutting Tool Angles Relation 5 {& Y, r- D) Z! \! M
  for a Wiper Cutting Insert ..........................................................108
1 W3 s$ K, f, m5 `  ~# w  2.7.3   Determination of Cutting Tool Angles  * U+ y7 U# S3 b, A
   for a Single-point Tool ...............................................................110
4 M* a9 I* X2 b' [# {/ f9 g, \" ?6 M  2.7.4   Flank Angles of a Dovetail Forming Tool .................................117
$ l( j( c& q+ W/ o6 K4 s' c  2.7.5   Summation of Several Motions..................................................119 % n) T( l, K$ v( c- {8 e( Z& E1 d# C
References......................................................................................................125 ' a7 d4 D1 ]3 [2 s8 u- Z) }/ y
3  Fundamentals of the Selection of Cutting Tool Geometry Parameters...127 # \; T$ U* F% H5 A
3.1   Introduction ...........................................................................................127 0 u$ q- B) Z" P2 O# u; e
3.2   General Considerations in the Selection of Parameters  
9 J  D0 G' J6 p; v+ O: X# E  of Cutting Tool Geometry .....................................................................129 0 w- J& S* v" }1 v7 ~
3.2.1 Known Results .............................................................................129
/ a' V& ]. p- {% q6 X1 O  3.2.2 Ideal Tool Geometry and Constrains............................................130
9 X( L* L3 v5 ~% e) O% F  3.2.3 Practical Gage for Experimental Evaluation of Tool Geometry...132
& E( U& _/ O) P: s% n' X. L3.3   Tool Cutting Edge Angles .....................................................................132 , I3 w1 g9 u' l" A- R' @5 y
3.3.1  General Consideration................................................................132
" m9 U. W( D. m  p  3.3.2   Uncut ChipT in Non-free Cutting ..............................................134
7 a0 H$ ?) ?% V1 n4 l0 u* {( l( G  3.3.3   Influence on the Surface Finish..................................................142
" s1 ^3 v$ v8 ]3 @ 3.3.4  Tools with κr > 90°.....................................................................144
7 e5 H" t" A; x1 ]4 v& s  3.3.5   Tool Minor Cutting Edge Angle ................................................147
, K7 ~! e# Z1 l2 b( S- W6 Z3.4.  Edge Preparation ...................................................................................161 / N/ k' _2 a9 a
3.4.1  General .......................................................................................161
) d1 c' O% k% A1 z9 C3 U% ^5 Q/ L  3.4.2   Shape and Extent........................................................................163
; _  f* x# W1 G5 g 3.4.3  Limitations .................................................................................163
7 @2 T1 O8 S7 `% ~( J  3.4.4   What Edge Preparation Actually Does.......................................169 ! ~2 j! i# L5 h! W. K& @
3.5   Rake Angle............................................................................................171
6 q5 a( W3 Y) B7 a: A" h& f# X/ z 3.5.1  Introduction................................................................................171 , E$ l: r$ o" p, V8 K
  3.5.2   Influence on Plastic Deformation and Generazliations ..............175 % A6 K* I% a- m  X
  3.5.3   Effective Rake Angle .................................................................183 ) X+ D5 _. _- J. I. o, J. Z
  3.5.4   Conditions for Using High Rake Angles....................................189 5 K  e" Z" I) ^' O
3.6   Flank Angle ...........................................................................................191
1 Z0 W% x8 g& }/ q% y9 B3.7   Inclination Angle...................................................................................193
2 R3 P. i; o3 D1 D5 o) B      3.7.1   Turning with Rotary Tools.........................................................195
# }" G1 ^5 y( W* L  K9 Q 3.7.2  Helical Treading Taps and Broaches..........................................197
$ ~3 \* k) F9 a2 z" c: Q 3.7.3  Milling Tools..............................................................................198   t. L# ]! [& |* \6 Q9 I, a
References......................................................................................................201 * x' u8 H' @& i$ u) ~# m
4   Straight Flute and Twist Drills ...................................................................205
; n4 i. g; J% ^5 M% Z8 P4.1   Introduction ...........................................................................................205
4 E6 r# C3 z3 N) d% N! c& [4.2   Classification.........................................................................................206
3 [' r0 R) f3 Q5 ]- b9 l4.3   Basic Terms...........................................................................................208 ' `# N3 ]' \1 G5 c! Z' }4 X
4.4   System Approach ..................................................................................211
6 J: k7 T$ y! E, } 4.4.1  System Objective .......................................................................212 1 x3 K4 ~) l3 @1 _9 f3 f8 G
4.4.2  Understanding the Drilling System............................................212 6 c+ h5 v+ ~2 H
  4.4.3.  Understanding the Tool..............................................................212
& s; P# @: r  F( ~9 e4.5.  Force System Constrains on the Drill Penetration Rate ........................213 . i; i! |3 Q2 u& R8 n# v
  4.5.1   Force-balance Problem in Conventional Drills ..........................213
! [( _  ~6 @* s! T5 i" d+ v, h% x! X  4.5.2   Constrains on the Drill Penetration Rate....................................218 1 @; P: V5 {# r( Z6 n2 Z, o$ L# [) ~
4.5.3  Drilling Torque ..........................................................................219   K9 K- E  H: s& Q: C' t& p
4.5.4  Axial Force.................................................................................220
& O, X9 i! `3 m  4.5.5   Axial Force (Thrust)-torque Coupling .......................................221
/ j' y8 s9 @' i1 z4.6   Drill Point ..............................................................................................223
% d! k/ Y! ]  E 4.6.1  Basic Classifications ..................................................................223
" T( f2 _% C* t5 P; g  4.6.2   Tool Geometry Measures to Increase the Allowable  1 Q! T9 a- h5 l
Penetration Rate ....................................................................................224 % {# n* @' \& p/ Z: I5 w, M8 O
4.7   Common Design and Manufacturing Flaws..........................................259 2 x% [5 m: q2 c) D) v, D2 ~) l: f
  4.7.1   Web Eccentricity/ Lip Index Error.............................................260 2 {, g0 i" W* R* c
  4.7.2   Poor Surface Finish and Improper Tool Material/Hardness.......261 1 k& B% b( T: l
4.7.3  Coolant Hole Location and Size.................................................263
- @0 g& Q# J8 L. x2 g6 R0 W* P4.8   Tool Geometry ......................................................................................267
+ R( \' y3 b) a  4.8.1   Straight-flute and Twist Drills Particularities............................269 6 N; M% j% H1 H+ L3 v4 w
  4.8.2   Geometry of the Typical Drill Point ..........................................270 . S7 e- B( r5 W
  4.8.3   Rake Angle.................................................................................272 6 p& {2 I$ k2 y$ w5 g  S9 T1 c
  4.8.4  Inclination Angle .........................................................................280
  \3 b( J" @) a6 T; N# {7 f 4.8.5  Flank Angle................................................................................281 : ?: v  I: W: u9 T9 k! |6 x
  4.8.6   Geometry of a Cutting Edge Located at an Angle  ) K7 n# X; e, ~: |( l0 u; [: e$ |, J
   to the y0-plane ............................................................................292
7 P7 u0 o4 I2 M( l% b 4.8.7  Chisel Edge ................................................................................295 $ q# @8 B' s* p7 U) X# y5 k
  4.8.8   Drill Flank is Formed by Two Planes: Generalization...............306 % X3 V: x& I  p; E+ j
  4.8.9   Drill Flank Angle Formed by Three Planes ...............................310
6 Q: Q; X1 g2 T( ]" a* y1 ^3 Z 4.8.10  Flank Formed by Quadratic Surfaces.........................................313 # G& A- G+ \" y) V% \" T% ?% N
4.9   Load Over the Drill Cutting Edge .........................................................324 & P* O8 I- n& z6 G6 }$ a1 |% f* Q; P
   4.9.1   Uncut Chip Thickness in Drilling ..............................................325 4 K) c3 j  u* K! ~$ ^( Y1 Y2 S% e+ C& R
  4.9.2   Load Distribution Over the Cutting Edge ..................................327 . ^  b: N  M% C4 e! @
4.10  Drills with Curved and Segmented Cutting Edges ................................328 + w: }, d, f, B& c3 h
  4.10.1 Load of the Cutting Part of a Drill with Curved Cutting Edges .329 % {3 M% y& X) P1 K5 s- U8 r% |9 K* n
  4.10.2 Rake Angle.................................................................................332
, D  V9 D" G8 ]4 b0 Q+ GReferences......................................................................................................337
/ X+ d. v6 c. D% n; C5   Deep-hole Tools............................................................................................341
2 ], Q3 \3 \* m3 b- S6 y+ H5.1   Introduction ...........................................................................................341 : @: z9 u' E; y9 I. w1 W
5.2   Generic Classification of Deep-hole Machining Operations.................343 # t" b' g! D* M5 ?9 D- u
5.3   What Does ‘Self-piloting Tool’ Mean? .................................................345
- J( \+ {* ^$ u) V  5.3.1   Force Balance in Self-piloting Tools..........................................345 # P: L6 f* M/ q! i- h0 p: z
5.4   Three Basic Kinematic Schemes of Drilling .........................................350 % ?) V  H8 d' i& A
  5.4.1   Gundrill Rotates and the Workpiece is Stationary .....................351
9 j, |4 Z- L% u9 g+ z1 g; d# ^ 5.4.2  Workpiece Rotates and the Gundrill is Stationary .....................352 , U" m: \1 ^: b' E; K4 h
5.4.3  Counterrotation ..........................................................................352 , U7 F8 U: q+ u, Y* \( n: q
5.5   System Approach ..................................................................................353 ( r- k' R+ X( N7 e6 a
  5.5.1   Handling Tool Failure ................................................................353 : w! Y+ j  u. K. b* K( M' D, v: r- d
5.5.2  System Considerations ...............................................................354
) T; Q0 g) f) Z0 Z) N3 c& a) \5.6   Gundrills................................................................................................362 ' Y6 Q" Q% h2 J. E+ B9 i8 v* x7 S
5.6.1  Basic Geometry..........................................................................362
1 f$ c) }( N" p, u 5.6.2  Rake Surface ..............................................................................365
  @: j  p1 J3 C3 }7 g  5.6.3   Geometry of Major Flanks .........................................................370   J1 _4 R" L$ w( z/ I5 N
5.6.4  System Considerations in Gundrill Design ................................390
0 u# i  {7 @6 s8 H2 E' o5.6.5   Examplification of Significance of the High MWF Pressure ; s7 A$ ~3 a! T
  in the Bottom Clearance Space ..................................................423
& Q9 k% O/ f# d% G2 e# Z5 ?8 F9 P  5.6.6   Example of Experimental Study ................................................425 8 _* @7 k3 a" j5 Q/ t
  5.6.7   Optimization of Tool Geometry.................................................439
! a( b) f8 A+ W4 H9 H& zReferences......................................................................................................440
; G$ w0 Z- f4 ?% G4 o! _' q4 nAppendix A  
+ q: r; _& A, s$ y8 bBasic Kinematics of Turning and Drilling.......................................................443
4 T/ R+ k: F. Q" t$ J; B' w7 Y  b- VA.1   Introduction ...........................................................................................443
. n" b; A" R0 x" Y3 x+ s% BA.2  Turning and Boring ...............................................................................444 4 r4 G; ^+ m! N
  A.2.1  Basic Motions in Turning...........................................................444   j% f7 U5 j+ }4 u$ t' J$ b7 H
  A.2.2  Cutting Speed in Turning and Boring ........................................448 3 u1 ]0 X$ G2 p: t
  A.2.3  Feed and Feed Rate ....................................................................448 ) r( ~- x9 Y* R) v6 k
  A.2.4  Depth of Cut...............................................................................449 ; A) ~! X. m4 F
A.2.5  Material Removal Rate ..............................................................449
  z, a2 Z) p5 I- s4 z2 k A.2.6  Resultant Motion........................................................................450 ) r+ S: l2 r5 A/ M' r
A.3  Drilling and Reaming ............................................................................450
6 J2 A: ^' h% t A.3.1  Basic Motions in Drilling...........................................................450
2 t! q( [6 O, d* ~/ A3 J  L A.3.2  Machining Regime.....................................................................451   Q9 e3 D5 S8 \' @: f1 w2 U
A.4  Cutting Force and Power .......................................................................453 / a: Q6 t" X/ b6 V% |2 ?- E2 z
  A.4.1  Force System in Metal Cutting...................................................453 $ M# ~1 L% |3 ]9 S# A" H
  A.4.2  Cutting Power ............................................................................454
" Q8 Z# a3 \# I' j* M A.4.3  Practical Assessment of the Cutting Force.................................455 & x' A" A( O$ e0 H9 l
References......................................................................................................461
7 A/ d4 U- L% fAppendix B    ]# l  R3 |2 A( X
ANSI and ISO Turning Indexable Inserts and Holders.................................463
0 r! I7 Q; [9 b4 z3 IB.1   Indexable Inserts ...................................................................................463
6 J5 R8 y" |8 F/ n, _! T  B.1.1  ANSI Code .................................................................................464
  e6 ^: U0 E1 ]% G0 _ B.1.2  ISO Code....................................................................................471
; h! m& w2 f5 P5 F# y6 H, X- b  B.2 Tool Holders for Indexable Inserts (Single Point Tools) ......................491
" D3 l9 A! ^, o8 E  B.2.1   Symbol for the Method of Holding Horizontally Mounted  ! D$ v" T0 b! t8 u: I
Insert – Reference Position (1) ..............................................................492 8 X/ e' L; i! n0 n
  B.2.2   Symbol for Insert Shape – Reference Position (2) .....................493
6 I* h  Q$ G+ k2 Z( a" k( U; Y* ]  B.2.3   Symbol for Tool Style – Reference Position (3) ........................493
+ y/ d  i6 v( U- Q  J) j  B.2.4   Letter Symbol Identifying Insert Normal Clearance –  
: |/ ~6 s' r+ E8 E3 `   Reference Position (4)................................................................494
. d6 }, C7 k6 `1 F$ n! i9 W  B.2.5   Symbol for Tool Hand – Reference position (5) ........................494 ) S# y) d4 a, p3 V
  B.2.6  Symbol for Tool Height (Shank Height of Tool Holders  
1 I7 v( H7 x. y. S# c    and Height of Cutting Edge) - Reference Position (6) ...............494 - `7 F0 I% @+ A6 k7 x
  B.2.7  Number Symbol Identifying Tool Holder Shank Width –  
( o; u6 A; D4 p1 b   Reference Position (7)................................................................495
8 [7 q: }9 r/ D; z7 H& v0 p; t8 Z  B.2.8  Number Symbol Identifying Tool Length –  
" }4 H& i/ n3 |1 C3 ], {5 V   Reference Position (8)................................................................495
6 L! x: o$ j; ~5 a5 i7 L  B.2.9   Letter Symbol Identifying Indexable Insert Size –  : g; Z* D0 k" v/ e
   Reference Position (9)................................................................497 4 g3 M' L5 s% u8 H, q4 _3 k
Appendix C  
# E/ k, [# a4 X6 l/ |3 NBasics of Vector Analysis ..................................................................................499
0 v* K  p8 f: P4 F6 z+ _C.1   Vectors and Scalars ...............................................................................499
' b6 B0 G* K( C8 l5 ], r- RC.2   Definition and Representation...............................................................500 6 V1 ^5 d& @/ O& A( _
C.2.1  Definitions..................................................................................500
0 u! z: y% e. _- p8 U  q6 q: L C.2.2  Basic Vector Operations ............................................................503   U1 C- [% b7 q$ b3 O/ ^  z; e
C.3   Application Conveniences.....................................................................509 3 ^2 [( X# l2 @9 _$ C$ m' ~" r# l
C.4  Rotation: Linear and Angular Velocities...............................................511 ) ^: W$ \$ e) g  q
  C.4.1   Planar Linear and Angular Velocities ........................................511
6 \/ Z" g9 F+ _: \5 r2 ]# ~  C.4.2   Rotation: The Angular Velocity Vector .....................................515 . ?* w1 m0 T8 [: l: F( N2 d3 ]
References ...........................................................................................................518
4 \; j3 f3 Q( y6 UAppendix D  
$ ?4 h# p) d+ R3 Z2 y: xHydraulic Losses: Basics and Gundrill Specifics............................................519
7 y& |0 Z5 _3 ^D.1  Hydraulic Pressure Losses – General ....................................................519
7 W! i8 j8 W( i7 s7 O& g D.1.1  Major Losses: Friction Factor ....................................................520 1 I+ X0 [6 s2 R7 ]: d
  D.1.2  Minor Losses (Losses Due to Form Resistance) ........................521
/ B+ n: ^- v) U# V" ` D.2  Concept of the Critical MWF Velocity and Flow Rate .........................521
/ _" G% w8 F  l! Y0 H1 R0 l  D.2.1  MWF Flow Rate Needed for Reliable Chip Transportation.......522 & _( U8 }& g: C0 }; g9 W9 P
  D.2.3  Example D.1...............................................................................527 3 C. C4 [$ w& U9 }4 s
D.3   Inlet MWF pressure...............................................................................528
( O/ G: |! ]- \2 Y" M! _: [5 JD.4  Analysis of Hydraulic Resistances ........................................................532 4 Z, p) j) ?! l0 Z# N
  D.4.1  Analysis of Hydraulic Resistances Over Which the Designer  
7 f/ _5 b% o) S0 `; L5 |) S    Has No or Little Control ............................................................532
/ |$ O" Y8 g- Q' L  D.4.2  Variable Resistances Over Which the Designer Has Control ....535
, G, N' ]7 U2 C! o" j. C. QD.5   Practical Implementation in the Drill Design ........................................539 2 [$ S. B- ~' I- L, l
References ..........................................................................................................543 + B) W' Y/ r8 y# n
Appendix E
* O8 y8 V6 Y6 }  XRequirements and Examples of Cutting Tool Drawings................................545 3 j" e; g: X/ b( x
E.1   Introduction ...........................................................................................545 4 c1 v- F7 a. e/ K2 K
E.2   Tool Drawings – the Existent Practice ..................................................546
% S  @6 l2 Y. R7 Z# e0 W! U4 j: OE.3   Tool Drawing Requrements ..................................................................548 ( _- ]8 {7 u% M8 T0 a
E.4   Examples of Tool Drawing ...................................................................553 2 e+ |+ J% _$ }6 Y3 o
References ..........................................................................................................559
% W- E  S$ h, ]; o( l$ w# iIndex…………………………………………………………………………….561
# l. O% p  ?$ E! w: t! H   U/ G4 P; v% U6 l' y

- h1 }1 G' i7 ^8 c* e8 T
发表于 2011-6-25 13:07:50 | 显示全部楼层
都是些神马?
发表于 2011-6-25 13:33:41 | 显示全部楼层
埋头挖矿中。。。。。。。。。
发表于 2011-6-26 15:14:56 | 显示全部楼层
好东西啊。。。只是,刀具不是我的工作。。。顶起,不沉。。。
 楼主| 发表于 2011-6-26 18:10:54 | 显示全部楼层
专业人士自有看法。
发表于 2011-6-27 18:42:38 | 显示全部楼层
好东西啊,英文的,看着太费劲了
发表于 2011-6-27 21:53:22 | 显示全部楼层
从网上查找这本书是Springer Series in Advanced Manufacturing丛书中的一本  h( m/ J. X% w. T) G8 L+ a# d
请问这套丛书共包含哪几本书
您需要登录后才可以回帖 登录 | 注册会员

本版积分规则

Archiver|手机版|小黑屋|机械社区 ( 京ICP备10217105号-1,京ICP证050210号,浙公网安备33038202004372号 )

GMT+8, 2025-9-15 19:08 , Processed in 0.081848 second(s), 18 queries , Gzip On.

Powered by Discuz! X3.5 Licensed

© 2001-2025 Discuz! Team.

快速回复 返回顶部 返回列表