找回密码
 注册会员

QQ登录

只需一步,快速开始

搜索
查看: 8731|回复: 19

Geometry_of_Single_point_Turning_Tools_and_Drills

 火.. [复制链接]
发表于 2011-6-23 22:58:22 | 显示全部楼层 |阅读模式
本帖最后由 机器鼠 于 2011-6-23 23:18 编辑 & ?& S* p" K" N9 Z/ ~
1 F! G' C3 P! j! ?* r- G7 T0 O5 t" r
Geometry_of_Single_point_Turning_Tools_and_Drills__Fundamentals_and_Practical_Applications.pdf/ N: Q9 X2 I# J6 x9 s: A6 s
有要的吗?刀具,细节,很到位。英文版。- C' j# w; \( K3 Y
国内无人这么细研究的吧?

Geometry_of_Single_point_Turning_Tools_and_Drills__Fundamentals_and_Practical_Ap.rar

4.35 MB, 阅读权限: 90, 下载次数: 8, 下载积分: 威望 -10 点

7

Geometry_of_Single_point_Turning_Tools_and_Drills__Fundamentals_and_Practical_Ap.rar

4.35 MB, 下载次数: 7, 下载积分: 威望 -10 点

6

Geometry_of_Single_point_Turning_Tools_and_Drills__Fundamentals_and_Practical_Ap.rar

4.35 MB, 下载次数: 8, 下载积分: 威望 -10 点

5

Geometry_of_Single_point_Turning_Tools_and_Drills__Fundamentals_and_Practical_Ap.rar

4.35 MB, 下载次数: 6, 下载积分: 威望 -10 点

4

Geometry_of_Single_point_Turning_Tools_and_Drills__Fundamentals_and_Practical_Ap.rar

4.35 MB, 下载次数: 6, 下载积分: 威望 -10 点

3

Geometry_of_Single_point_Turning_Tools_and_Drills__Fundamentals_and_Practical_Ap.rar

4.35 MB, 下载次数: 6, 下载积分: 威望 -10 点

2

Geometry_of_Single_point_Turning_Tools_and_Drills__Fundamentals_and_Practical_Ap.rar

140.75 KB, 阅读权限: 90, 下载次数: 7, 下载积分: 威望 -10 点

1

回复

使用道具 举报

发表于 2011-6-24 19:17:16 | 显示全部楼层
说什么的?
 楼主| 发表于 2011-6-24 22:02:25 | 显示全部楼层
Although almost any book and/or text on metal cutting, cutting tool design, and 9 ~4 v& @/ ]4 Q  w/ t" F
manufacturing process discusses to a certain extent the tool geometry, the body of . S( E6 w" _. B4 }4 F; D
knowledge on the subject is scattered and  confusing. Moreover, there is no clear
! Q3 ~7 q5 H0 I# _objective(s) set in the selection of the tool geometry parameters so that an answer $ T0 _4 y- e8 T6 I: A
to a simple question about optimal tool geometry cannot be found in the literature " }) X. Q# x' f9 w7 P
on the subject. This is because a criterion (criteria) of optimization is not clear, on ( N* u) Z3 v- Q& W7 B9 L1 U) @
one hand, and because the role of cutting tool geometry in machining process " C$ R! r( z, M& `
optimization has never been studied systematically, on the other. As a result, many   `% B! B& S! x' R0 l8 {- _$ f7 H; x
practical tool/process designers are forced to use extremely vague ranges of tool
6 d7 s+ W$ b: m% \% F9 @- I0 [. }geometry parameters provided by handbooks. Being at least 20+ years outdated, 2 I6 c: B% q: {9 j
these data do not account for any particularities of a machining operation including : W" @- I0 `9 {6 v6 ^4 ]
a particular grade of tool material, the condition of the machine used, the cutting : M+ G3 D) G3 D" R
fluid, properties and metallurgical condition of the work material, requirements to   N  q/ r5 g6 i4 N8 @
the integrity of the machined surface, etc.
+ M* B2 j( u% sUnfortunately, while today's professionals, practitioners, and students are 0 A9 v& l6 ~8 r3 o  M" d' f( V
interested in cutting tool geometry, they are doomed to struggle with the confusing
+ f: Q+ d4 n5 a1 k; h( O* |$ vterminology. When one does not know what the words (terms) mean, it is easy to
3 X" |3 N6 N' U% k/ @slip into thinking that the matter is difficult, when actually the ideas are simple, 6 u( o, Y9 y. ]# \8 Y
easy to grasp, and fun to consider. It is the terms that get in the way, that stand as a 2 z1 b$ X& l7 |0 l" n4 w
wall between many practitioners and science. This books attempts to turn those
: W' w  |3 y2 X3 p5 O0 uwalls into windows, so that readers can peer in and join in the fun of proper tool
; ?0 a9 ]% }$ v5 `  H* Mdesign. % I, ^1 M: `5 g0 _" n1 v5 v0 E
So, why am I writing this book? There are a few reasons, but first and foremost,
6 L- g2 @. \& O% {: L% zbecause I am a true believer in what we call technical literacy. I believe that 3 M, l3 Y% o! W  k
everyone involved in the metal cutting business should understand the essence and
; o) {0 A# `  G2 O* m1 M- i+ o7 Cimportance of cutting tool geometry. In my opinion, this understanding is key to ! [) B* }8 R' w
improving efficiency of practically all machining operations. For the first time, this % G+ I3 s7 {: K; ]& }# ?+ }+ ^
book presents and explains the direct correlations between tool geometry and tool
( J9 C$ s* @* n  H& ?& mperformance. The second reason is that I felt that there is no comprehensive book
/ M) k! I$ O, E' Y: J+ N, I  Gon the subject so professionals, practitioners, and students do not have a text from % r: Y" d0 @4 x3 C& ?% P
which to learn more on the subject and thus appreciate the real value of tool
/ F& F5 f9 H' I) Dgeometry. Finally, I wanted to share the key elements of tool geometry that I felt
. Q" F" i; Q- B3 N, D  `- R6 N5 |, v! r' qwere not broadly understood and thus used in the tool design practice and in
/ z; O& D) O1 Z$ b7 E6 _optimization of machining operations in industry. Moreover, being directly
+ W0 B9 z8 l2 n+ Z- o# N$ r# vinvolved in the launch of many modern manufacturing facilities equipped with
1 K. z4 u7 Y! ]6 N: sstate-of-the-art high-precision machines, I found that the cutting tool industry is not 6 |/ C$ ], i$ T4 H
ready to meet the challenge of modern metal cutting applications. One of the key # h8 W$ ]6 _5 ?. ?& @  V( s1 W
issues is the definite lack of understanding of the basics of tool geometry of
+ x( ~9 B% X; {0 w6 {. Ustandard and application-specific tools. 0 Q5 g+ |! ]/ O" B- o
The lack of information on cutting tool geometry and its influence on the - f- z/ m' s3 q& N" @4 I) Y
outcome of machining operations can be explained as follows. Many great findings - T& X0 \- S& c8 `, x
on tool geometry were published a long time ago when neither CNC grinding
$ a, y; ], w8 s) @machines capable of reproducing any kind of tool geometry were available nor ' j1 h+ N6 _7 o) M, ~1 Y. d
were computers to calculate parameters of such geometry (using numerical
% ]6 a( c4 u  r- p+ xmethods) common. Manual grinding using standard 2- and 3-axis simple grinding
2 D! [& z, c( _* sfeatures was common so the major requirement for tool geometry was the simpler   C* l7 f- l7 }' h6 ~
the better. Moreover, old, insufficiently rigid machines, aged tool holders and part
. d$ n5 [* J5 `* ^" ]7 [4 j9 Hfixtures, and poor metal working fluid (MWF) selection and maintenance levered . x0 |' ~/ ~# ?) f
any advancement in tool geometry as its influence could not be distinguished under
/ J5 c2 K1 f. B1 t( k- othese conditions. Besides, a great scatter in the properties of tool materials in the
% A# Q+ h  w$ spast did not allow distinguishing of the true influence of tool geometry. As a result,
. C/ {7 D6 G  T* A" Fstudies on tool geometry were reduced to  theoretical considerations of features of
/ T! F6 }: k4 w/ z( o) z% n; V+ w7 l% xtwist drills and some gear manufacturing  tools such as hobs, shaving cutters,
4 O, d( n0 w9 {! F' ^3 S% Zshapers, etc.  
, q4 y/ I1 Y- ^' a7 L+ NGradually, once mighty chapters on tool geometry in metal cutting and tool
, `4 W8 Q7 D* c, b! }2 [" N; Cdesign books were reduced to sections of few pages where no correlation between
* i7 t) [6 E" \; h. Ntool geometry and tool performance is normally considered. What is left is a : G) I& `% X, N' Q
general perception that the so-called “positive geometry” is somehow better than
. l% `! q& d5 y, B“negative geometry.” As such, there is no quantitative translation of the word
, m' t( b3 A1 v8 S1 {“better” into the language  of technical data although a great number of articles - H# |- t  V; x. J
written in many professional magazines discuss the qualitative advantages of $ S& H8 a8 n, I. r0 H1 R
“positive geometry.” For example, one popular manufacturing magazine article : `; W  s* L7 H3 f
read “Negative rake tools have a much  stronger leading edge and tend to push : \3 S# {+ C" `4 K& K
against the workpiece in the direction of the cutter feed. This geometry is less free ! q1 z+ l) _/ X7 l* _' r
cutting than positive rakes and so consumes more horsepower to cut.” Reading ( @4 x6 M6 Y" z- a  ?8 X2 t" W
these articles one may wonder why cutting tool manufacturers did not switch their 3 K, U/ J) P3 t$ v" a) {1 K
tool designs completely to this mysterious “positive geometry” or why some of . `2 M- [! H# \8 s& S3 g3 @
them still investigate and promote negative geometry.
9 u) x' i# H/ lDuring recent decades, the metalworking industry underwent several important
- A1 o% y* \* B' c7 Z2 `changes that should bring cutting tool geometry into the forefront of tool design 8 ~3 j' H3 H/ K/ n4 ~& E
and implementation:
 楼主| 发表于 2011-6-24 22:03:42 | 显示全部楼层
1   What Does It Mean “Metal Cutting”? ...........................................................1 8 P; b, R) k: V( K9 }/ j" c2 H" R0 z  R
1.1   Introduction ...............................................................................................1 # @$ C9 x% ~) T$ T& p
1.2   Known Results and Comparison with Other Forming Processes ..............2
. \( o( @/ I8 X7 \$ Q2 L) k: R  1.2.1   Single-shear Plane Model of Metal Cutting ...................................2 , M# h' l8 X7 l
  1.2.2   Metal Cutting vs. Other Closely Related Manufacturing  ) T7 x8 t" _9 J% `4 \
Operations .................................................................................................5   C/ Z2 ^% ?; z7 u3 _
1.3   What Went Wrong in the Representation of Metal Cutting?...................22
; v9 x3 ~6 u0 w& A  1.3.1   Force Diagram..............................................................................23
  @% D  p, Q! g2 F, w& H  1.3.2   Resistance of the Work Material in Cutting.................................25
4 k/ D/ }9 V# |5 O8 z  1.3.3   Comparison of the Known Solutions for the Single-shear  4 W" a. p' D' f
  Plane Model with Experimental Results .................................................27 : y' m5 I, X/ W# M* h& c
1.4   What is Metal Cutting?............................................................................28 $ @# U4 H2 v2 t- Z
  1.4.1   Importance to Know the Right Answer........................................28 % ?/ Z0 w5 d1 Y: H% |/ y- C
1.4.2  Definition .....................................................................................28
3 ?: A, I/ W( D9 T$ J+ L3 |  1.4.3   Relevance to the Cutting Tool Geometry.....................................29 : j+ q. c( ]6 k7 H% b1 I
1.5   Fundamental Laws of Metal Cutting.......................................................32
& M0 w0 c, e- U! r- ~& s7 A  1.5.1   Optimal Cutting Temperature – Makarow’s Law........................32
1 @6 |" B8 Z9 m0 m7 [5 I 1.5.2  Deformation Law.........................................................................35 # v, X0 K) |+ \2 |9 S
References........................................................................................................50 : F# e& {+ k* s* L
2   Basic Definitions and Cutting Tool Geometry,  # K2 D/ w8 |( Y' i8 Y3 M
Single Point Cutting Tools ............................................................................55
. F! s" k% t6 U& B5 Z  w% n2.1   Basic Terms and Definitions ...................................................................55   i( N) F6 b- A/ y- B
2.1.1  Workpiece Surfaces.......................................................................57
* v9 Q* Y+ m4 A' e* z0 q 2.1.2  Tool Surfaces and Elements ..........................................................57 ) d% w" b/ Y- y& P
2.1.3  Tool and Workpiece Motions.......................................................57 + V& t2 l. \3 C! E! ~7 N# s* y
2.1.4  Types of Cutting ............................................................................58
9 ?9 b: N: n! ]2.2   Cutting Tool Geometry Standards...........................................................60 ) m+ }. v& H5 g0 [$ j% f
2.3   Systems of Consideration of Tool Geometry ..........................................61 ) p, K2 b6 r6 t+ i/ E+ Z
2.4.  Tool-in-hand System (T-hand-S) .......................................................64
! o) E2 f+ e- ]& g  2.4.1   Tool-in-hand Coordinate System.................................................64 6 h: }1 O! N1 @/ k5 h
2.4.2  References Planes ........................................................................66
' m# N$ {9 r- g5 k$ u 2.4.3  Tool Angles..................................................................................68 7 K4 e; P. Q( @9 Z$ u" h
  2.4.4   Geometry of Cutting Tools with Indexable Inserts ......................74
2 o, f6 E* ^% ~  Q' ^# e1 X2.5   Tool-in-machine System (T-mach-S)......................................................84 " u/ B% O9 l+ ]
2.5.1  Angles ..........................................................................................84 $ d, `" G4 o! d/ i& n
  2.5.2   Example 2.3 .................................................................................88 6 A4 A$ A' Q1 k& n
2.6   Tool-in-use System (T-use-S) .................................................................90 / c0 b# y4 f! N" D& j$ O" r
2.6.1  Reference Planes ..........................................................................91
% }9 Q* e, J+ Q. C2 f 2.6.2  The Concept .................................................................................92
' S  P. ^4 _( f* A' e4 R  2.6.3   Modification of the T-hand-S Cool Geometry .............................92
' n; V% @0 ]1 x6 O+ K" K  2.6.4   Kinematic Angles.........................................................................98
2 Q- H. E, M5 H5 F; E! I( z; I  2.6.5   Example 2.4 ...............................................................................100
2 Q7 Z$ G' m$ J  T2.7   Avalanched Representation of the Cutting Tool Geometry  3 a8 V3 |( A4 i' S6 f5 z
in T-hand-S............................................................................................102 " A) w8 G1 t) ^* n( h
2.7.1  Basic Tool Geometry .................................................................102
0 h. ~" y( D0 n0 o2.7.2   Determination of Cutting Tool Angles Relation + F- o2 [- P' \- z% X
  for a Wiper Cutting Insert ..........................................................108
) D2 C$ e+ ~: Z  2.7.3   Determination of Cutting Tool Angles  
  R. B( @0 Z, o$ M& V8 [% M1 ~   for a Single-point Tool ...............................................................110 2 X1 V. B! s1 c7 K; E
  2.7.4   Flank Angles of a Dovetail Forming Tool .................................117 " @+ t; @( K( t4 j
  2.7.5   Summation of Several Motions..................................................119
2 I5 j1 o4 @" _  }; }( U& JReferences......................................................................................................125 ! _: t  X  _0 `' J: h; g) q* H8 q
3  Fundamentals of the Selection of Cutting Tool Geometry Parameters...127 , ]: o4 ]( i  T" n# L
3.1   Introduction ...........................................................................................127 9 X( S' R: M/ j
3.2   General Considerations in the Selection of Parameters  
  D4 B& A+ u8 @; i7 U  of Cutting Tool Geometry .....................................................................129 9 @7 k3 \( t7 p2 `8 p* J+ j, W
3.2.1 Known Results .............................................................................129 ( Z) d" f' O) {, u6 V+ ~
  3.2.2 Ideal Tool Geometry and Constrains............................................130
6 O! ]8 [0 }4 E0 C4 R  3.2.3 Practical Gage for Experimental Evaluation of Tool Geometry...132
' X1 o8 r( q. R8 O3.3   Tool Cutting Edge Angles .....................................................................132
/ }% \( \+ j" E* _ 3.3.1  General Consideration................................................................132
4 z7 N3 p- L1 G  3.3.2   Uncut ChipT in Non-free Cutting ..............................................134
. w" k6 B- b. [0 [  3.3.3   Influence on the Surface Finish..................................................142 & M! L4 o0 }& I* T+ C5 R
3.3.4  Tools with κr > 90°.....................................................................144 " |( @, \0 ^2 e  a0 f. q4 O
  3.3.5   Tool Minor Cutting Edge Angle ................................................147 " g7 k- k, ?) V2 v
3.4.  Edge Preparation ...................................................................................161 ; y4 _& V0 J4 W: j
3.4.1  General .......................................................................................161
2 k4 Z( V) c. [% x  3.4.2   Shape and Extent........................................................................163 1 E7 A' |9 |" k1 D% E
3.4.3  Limitations .................................................................................163
8 k; `( F) l$ n' H, I' c2 I  3.4.4   What Edge Preparation Actually Does.......................................169 " _' h; P8 x- ?. B! y" E$ r
3.5   Rake Angle............................................................................................171 5 x# v: l2 D8 V2 Q% d7 `( ^% A
3.5.1  Introduction................................................................................171
* S; j' L" C) K$ j) |  3.5.2   Influence on Plastic Deformation and Generazliations ..............175 2 l3 h! c9 \6 c5 R* w
  3.5.3   Effective Rake Angle .................................................................183 : W( p: p: \9 `. k) Z
  3.5.4   Conditions for Using High Rake Angles....................................189
- C* Y: R9 E7 x: y) {! Q3.6   Flank Angle ...........................................................................................191 0 E2 d/ U0 t. b
3.7   Inclination Angle...................................................................................193
. [7 e) U& L5 C6 @' G      3.7.1   Turning with Rotary Tools.........................................................195 1 B. m0 D* G& f2 ?' a7 C2 }
3.7.2  Helical Treading Taps and Broaches..........................................197
; r/ }. `9 p& `: C 3.7.3  Milling Tools..............................................................................198 8 H, T1 ]) a+ S
References......................................................................................................201 ! s4 p; U# Y* u  v" X
4   Straight Flute and Twist Drills ...................................................................205
! P6 [! _0 ~6 |4 g: K1 o4.1   Introduction ...........................................................................................205 * A: Z% f9 P; f$ F
4.2   Classification.........................................................................................206 ' |% k: J# U3 t
4.3   Basic Terms...........................................................................................208
- e. ], S* v" E( ?4.4   System Approach ..................................................................................211 ' a8 Y, r; T( v0 u# ~- w+ v7 m1 f
4.4.1  System Objective .......................................................................212 7 M& V1 ~! Y- L# z
4.4.2  Understanding the Drilling System............................................212 / d, f3 h+ j- p& S
  4.4.3.  Understanding the Tool..............................................................212
; x4 t/ y# w2 Z2 ^9 s# ?3 c! j4.5.  Force System Constrains on the Drill Penetration Rate ........................213 2 M+ V% q& d1 `$ p  R: I
  4.5.1   Force-balance Problem in Conventional Drills ..........................213 ) r% s0 r- x- d9 e" g
  4.5.2   Constrains on the Drill Penetration Rate....................................218
6 K1 h9 R3 Y" G1 e; O9 ] 4.5.3  Drilling Torque ..........................................................................219
% Y0 Y" w0 Z+ o# k# Z8 ^) l! N$ Y 4.5.4  Axial Force.................................................................................220 9 d9 }8 w6 V/ G$ j$ u4 r* G5 T) d( l; W( t
  4.5.5   Axial Force (Thrust)-torque Coupling .......................................221 " V- ~, L: P! K" b4 S& ^6 ~' L
4.6   Drill Point ..............................................................................................223
4 K$ ], Z. X+ s* [" y 4.6.1  Basic Classifications ..................................................................223
  G( D+ n- q4 l. ^1 n  4.6.2   Tool Geometry Measures to Increase the Allowable  
+ L4 m7 ^: X5 `) T Penetration Rate ....................................................................................224 4 t  S6 S# Z; x  B5 h
4.7   Common Design and Manufacturing Flaws..........................................259
( t: F: F8 q6 w! E  H3 }  4.7.1   Web Eccentricity/ Lip Index Error.............................................260 8 f" ]+ C3 f  m
  4.7.2   Poor Surface Finish and Improper Tool Material/Hardness.......261
% s6 s# U- J: g+ [- B, ]( ? 4.7.3  Coolant Hole Location and Size.................................................263 3 L& N2 W/ @" q' [8 |
4.8   Tool Geometry ......................................................................................267
; _. g3 O/ Q# x- w! `5 R  4.8.1   Straight-flute and Twist Drills Particularities............................269 ) F% ?3 a& W# J- O5 u: I. {
  4.8.2   Geometry of the Typical Drill Point ..........................................270 4 T. I3 A  }- I& d, ~: v
  4.8.3   Rake Angle.................................................................................272 ; X4 i2 [* O* n% f. S+ q' r& R& @! n
  4.8.4  Inclination Angle .........................................................................280
. T, ?4 R, v, P! s 4.8.5  Flank Angle................................................................................281 . i4 ?/ c' I8 _2 [
  4.8.6   Geometry of a Cutting Edge Located at an Angle  ) ^+ n: j$ Q/ y  M4 T
   to the y0-plane ............................................................................292
  Z1 C4 X/ t4 N, o2 |( k$ P 4.8.7  Chisel Edge ................................................................................295
8 k+ ~+ t6 A  d  4.8.8   Drill Flank is Formed by Two Planes: Generalization...............306
& W7 Z' `+ ]0 \; b9 k$ P# L  4.8.9   Drill Flank Angle Formed by Three Planes ...............................310 5 T- {1 r; a$ [3 J3 C
4.8.10  Flank Formed by Quadratic Surfaces.........................................313
( q0 p8 t. s3 ]7 S" I4.9   Load Over the Drill Cutting Edge .........................................................324 5 z* n; j' X/ f5 N7 }, N
   4.9.1   Uncut Chip Thickness in Drilling ..............................................325 3 C9 _3 y8 T3 m$ m% j' N; Q
  4.9.2   Load Distribution Over the Cutting Edge ..................................327
5 f2 e) \# E4 S  S4.10  Drills with Curved and Segmented Cutting Edges ................................328 - o& }+ f6 F. @  `& M1 c* I, ^
  4.10.1 Load of the Cutting Part of a Drill with Curved Cutting Edges .329
; V; B' N! R. ^  S  4.10.2 Rake Angle.................................................................................332 $ m7 U% Q& h% O6 K# h, O. W6 ]
References......................................................................................................337 : l& D+ {% a  S1 r9 R
5   Deep-hole Tools............................................................................................341
) v8 D# X! r/ [" U' V5.1   Introduction ...........................................................................................341 1 `! q0 ?1 J4 Q, D* X! C) Z! Z. l
5.2   Generic Classification of Deep-hole Machining Operations.................343
9 L7 K- ?2 \" R0 r5.3   What Does ‘Self-piloting Tool’ Mean? .................................................345 9 R" l5 f3 }/ F( S7 u
  5.3.1   Force Balance in Self-piloting Tools..........................................345 5 E! ]# t, s( [+ R% r
5.4   Three Basic Kinematic Schemes of Drilling .........................................350 5 G( h! S/ `$ `" W$ s
  5.4.1   Gundrill Rotates and the Workpiece is Stationary .....................351
0 s& |! q7 n6 O( @0 W+ l) J 5.4.2  Workpiece Rotates and the Gundrill is Stationary .....................352 4 V' I2 k2 y: U' F- i$ A
5.4.3  Counterrotation ..........................................................................352
: ^9 h0 y0 W7 ^5.5   System Approach ..................................................................................353 % ^+ V3 O% O" |) t' k
  5.5.1   Handling Tool Failure ................................................................353
3 g5 c; K5 ^* t/ U  ] 5.5.2  System Considerations ...............................................................354
5 Y4 [9 y$ O. p$ b! N% D/ R5.6   Gundrills................................................................................................362
3 V. v" N: K2 A* B9 ~+ m 5.6.1  Basic Geometry..........................................................................362
& p6 J- U9 ]. k% ^/ e0 s; A) ] 5.6.2  Rake Surface ..............................................................................365 0 B4 e  I4 }6 F, j! \' n. Y
  5.6.3   Geometry of Major Flanks .........................................................370   o6 g7 g6 [7 Q1 H6 A0 m
5.6.4  System Considerations in Gundrill Design ................................390
0 c4 m4 D6 l- X9 t! x5.6.5   Examplification of Significance of the High MWF Pressure 7 X: `0 W3 M4 x- K4 k( e' ~6 a5 U
  in the Bottom Clearance Space ..................................................423 : G( Y: T/ o3 _
  5.6.6   Example of Experimental Study ................................................425 ; e# ^: @5 e) F1 k2 u
  5.6.7   Optimization of Tool Geometry.................................................439
- f1 P4 n5 C) w: v  i& T# PReferences......................................................................................................440
1 Y$ K1 `. T( r) d- }3 _Appendix A  
# [6 P7 c; ?8 u* T: T$ eBasic Kinematics of Turning and Drilling.......................................................443
5 ^3 v" d# K& q9 g: X' M! Q0 i4 W3 kA.1   Introduction ...........................................................................................443 ) m  P2 R; F4 K9 m$ V, H! \
A.2  Turning and Boring ...............................................................................444 - f& r# B2 `- t8 e# `
  A.2.1  Basic Motions in Turning...........................................................444 - b# {( y) x) L% _
  A.2.2  Cutting Speed in Turning and Boring ........................................448   t, k2 d# a% a+ s0 s
  A.2.3  Feed and Feed Rate ....................................................................448
+ `. E' [6 U0 G& W: c( n4 a$ v9 O0 @  A.2.4  Depth of Cut...............................................................................449
" _2 u4 [, G  A6 s4 B$ f% }/ t A.2.5  Material Removal Rate ..............................................................449
- k% z9 y9 z& _6 u A.2.6  Resultant Motion........................................................................450 + n2 p$ ?% v) w6 |& j. p  C! \
A.3  Drilling and Reaming ............................................................................450 & t# b' A7 T& x
A.3.1  Basic Motions in Drilling...........................................................450 6 w0 p2 B8 _/ w' q5 e7 E( s
A.3.2  Machining Regime.....................................................................451 9 _1 p1 R7 e. P
A.4  Cutting Force and Power .......................................................................453
+ [; N8 x7 h3 ?9 h" P. M  A.4.1  Force System in Metal Cutting...................................................453 $ p# D$ }7 O2 \: Q. v2 D+ u
  A.4.2  Cutting Power ............................................................................454
1 ?# f2 i+ q0 k3 f) _% I9 Q, S A.4.3  Practical Assessment of the Cutting Force.................................455 7 A6 c3 a1 ?+ m8 y" V& j
References......................................................................................................461 , ~9 I1 |& \6 j' s+ Q9 y
Appendix B  
6 |. K5 Y! t, a# k, G2 mANSI and ISO Turning Indexable Inserts and Holders.................................463 4 S- U4 Z6 ~0 P6 n  M* _
B.1   Indexable Inserts ...................................................................................463
3 D& I, T) }7 r; c, n  B.1.1  ANSI Code .................................................................................464
$ [8 Q9 n8 I; F B.1.2  ISO Code....................................................................................471
* N6 C0 r* M7 s; M0 W+ I5 n: R  B.2 Tool Holders for Indexable Inserts (Single Point Tools) ......................491 " E' q  ~1 _" s& I4 P
  B.2.1   Symbol for the Method of Holding Horizontally Mounted  ! {6 ?8 R" H0 {! t
Insert – Reference Position (1) ..............................................................492
" k( O$ Q; \9 @' u. ]  s# m+ h4 o/ }, d  B.2.2   Symbol for Insert Shape – Reference Position (2) .....................493
9 U9 u5 v" e2 w( R9 s  B.2.3   Symbol for Tool Style – Reference Position (3) ........................493
/ g1 D) o5 _2 L4 Q  B.2.4   Letter Symbol Identifying Insert Normal Clearance –  
. F+ r$ b# S. _) H8 t   Reference Position (4)................................................................494 4 y6 v, I% `, N3 _
  B.2.5   Symbol for Tool Hand – Reference position (5) ........................494 ; m. w' a" c6 I4 y: c5 L
  B.2.6  Symbol for Tool Height (Shank Height of Tool Holders  ) @& s, M6 E8 m6 Z9 E! j% ]2 U
    and Height of Cutting Edge) - Reference Position (6) ...............494
( l3 E) Z1 I& d/ G  B.2.7  Number Symbol Identifying Tool Holder Shank Width –  
/ I2 X& W  h, u% H" |! c; G  _  Y& `& x   Reference Position (7)................................................................495 + q, f& b# N9 x7 R) E5 C1 b7 G
  B.2.8  Number Symbol Identifying Tool Length –  
2 f( N2 O% b; L5 M3 r1 y6 q   Reference Position (8)................................................................495
, V+ o8 T0 }! Q, x  B.2.9   Letter Symbol Identifying Indexable Insert Size –  8 m" C* @" ^3 W
   Reference Position (9)................................................................497 ' U3 v4 A8 s, n
Appendix C  ! J. _; g9 |1 ^! d
Basics of Vector Analysis ..................................................................................499 ( I7 H9 P2 }$ V
C.1   Vectors and Scalars ...............................................................................499
9 I; J6 T' J. x, IC.2   Definition and Representation...............................................................500
2 S+ j8 a# w8 G5 R% X C.2.1  Definitions..................................................................................500
" I, f- z- Z& v. N7 W9 Y. u C.2.2  Basic Vector Operations ............................................................503
. n9 m" w. @# `) G9 H! ~0 BC.3   Application Conveniences.....................................................................509
$ _5 ]$ T  q# k2 o7 ^7 wC.4  Rotation: Linear and Angular Velocities...............................................511
5 P$ n/ g, ?) T' E& i  C.4.1   Planar Linear and Angular Velocities ........................................511 ) [6 C* b5 H9 U$ S- }
  C.4.2   Rotation: The Angular Velocity Vector .....................................515
" c0 q+ v  {( o: h% t* T7 [# U' q1 ZReferences ...........................................................................................................518 0 j6 p# y* s3 Y* u, B  j6 q
Appendix D  
$ c4 K9 H8 v5 i- c$ b3 iHydraulic Losses: Basics and Gundrill Specifics............................................519
& i' u. v  K% J- h0 E3 a/ N* |D.1  Hydraulic Pressure Losses – General ....................................................519 6 f6 `( K# N* }4 P
D.1.1  Major Losses: Friction Factor ....................................................520 # K  G# C/ B* }
  D.1.2  Minor Losses (Losses Due to Form Resistance) ........................521 : M# M( F3 r6 A
D.2  Concept of the Critical MWF Velocity and Flow Rate .........................521
+ t% m7 R7 f% Z! a  D.2.1  MWF Flow Rate Needed for Reliable Chip Transportation.......522
. ?" K9 ~+ [9 @9 R8 @4 G2 q  D.2.3  Example D.1...............................................................................527 ( ]8 |* W' b1 q; B
D.3   Inlet MWF pressure...............................................................................528 5 E2 O5 S% t  _9 @; i+ w
D.4  Analysis of Hydraulic Resistances ........................................................532
. D: Y* e9 J& c% ]  D.4.1  Analysis of Hydraulic Resistances Over Which the Designer  
$ Z  Y3 S+ k5 l( P" x+ M( H    Has No or Little Control ............................................................532
! s5 x" |5 T0 J. x8 D2 [; R' L4 t7 H  D.4.2  Variable Resistances Over Which the Designer Has Control ....535 : V- F( g; b; Z( E
D.5   Practical Implementation in the Drill Design ........................................539
, N- v0 _6 Z, w- zReferences ..........................................................................................................543
7 }# ~+ S+ [; Q! k: pAppendix E
5 f6 L, k$ c4 y1 q* ?$ vRequirements and Examples of Cutting Tool Drawings................................545
" p0 S; b2 e5 y' lE.1   Introduction ...........................................................................................545 ( o' [: T& U- C; \! F" V2 z
E.2   Tool Drawings – the Existent Practice ..................................................546 1 e4 M* x( i- ^( G# ^
E.3   Tool Drawing Requrements ..................................................................548
) o1 q4 n. S1 kE.4   Examples of Tool Drawing ...................................................................553
: ~; J  r$ z- `2 h" iReferences ..........................................................................................................559 " t, O5 C' w4 b; [
Index…………………………………………………………………………….561
* _( T$ u9 X1 p/ l. ?- V - }+ D! L7 @& V# {, k
% }- d4 N' x- `# L
发表于 2011-6-25 13:07:50 | 显示全部楼层
都是些神马?
发表于 2011-6-25 13:33:41 | 显示全部楼层
埋头挖矿中。。。。。。。。。
发表于 2011-6-26 15:14:56 | 显示全部楼层
好东西啊。。。只是,刀具不是我的工作。。。顶起,不沉。。。
 楼主| 发表于 2011-6-26 18:10:54 | 显示全部楼层
专业人士自有看法。
发表于 2011-6-27 18:42:38 | 显示全部楼层
好东西啊,英文的,看着太费劲了
发表于 2011-6-27 21:53:22 | 显示全部楼层
从网上查找这本书是Springer Series in Advanced Manufacturing丛书中的一本
# b* O+ h2 m1 z! b; y请问这套丛书共包含哪几本书
您需要登录后才可以回帖 登录 | 注册会员

本版积分规则

Archiver|手机版|小黑屋|机械社区 ( 京ICP备10217105号-1,京ICP证050210号,浙公网安备33038202004372号 )

GMT+8, 2025-10-16 03:33 , Processed in 0.082695 second(s), 18 queries , Gzip On.

Powered by Discuz! X3.5 Licensed

© 2001-2025 Discuz! Team.

快速回复 返回顶部 返回列表