机械社区

 找回密码
 注册会员

QQ登录

只需一步,快速开始

搜索
查看: 8367|回复: 19

Geometry_of_Single_point_Turning_Tools_and_Drills

[复制链接]
发表于 2011-6-23 22:58:22 | 显示全部楼层 |阅读模式
本帖最后由 机器鼠 于 2011-6-23 23:18 编辑
. Q. k5 Q, C: T4 d& Y# z  b5 \) Y) P, t3 K9 v1 y8 O2 w+ Z$ ]
Geometry_of_Single_point_Turning_Tools_and_Drills__Fundamentals_and_Practical_Applications.pdf
; F- C  W, x! U7 L5 R* p( U有要的吗?刀具,细节,很到位。英文版。/ s  B& h2 ]2 B4 A
国内无人这么细研究的吧?

Geometry_of_Single_point_Turning_Tools_and_Drills__Fundamentals_and_Practical_Ap.rar

4.35 MB, 阅读权限: 90, 下载次数: 8, 下载积分: 威望 -10 点

7

Geometry_of_Single_point_Turning_Tools_and_Drills__Fundamentals_and_Practical_Ap.rar

4.35 MB, 下载次数: 7, 下载积分: 威望 -10 点

6

Geometry_of_Single_point_Turning_Tools_and_Drills__Fundamentals_and_Practical_Ap.rar

4.35 MB, 下载次数: 8, 下载积分: 威望 -10 点

5

Geometry_of_Single_point_Turning_Tools_and_Drills__Fundamentals_and_Practical_Ap.rar

4.35 MB, 下载次数: 6, 下载积分: 威望 -10 点

4

Geometry_of_Single_point_Turning_Tools_and_Drills__Fundamentals_and_Practical_Ap.rar

4.35 MB, 下载次数: 6, 下载积分: 威望 -10 点

3

Geometry_of_Single_point_Turning_Tools_and_Drills__Fundamentals_and_Practical_Ap.rar

4.35 MB, 下载次数: 6, 下载积分: 威望 -10 点

2

Geometry_of_Single_point_Turning_Tools_and_Drills__Fundamentals_and_Practical_Ap.rar

140.75 KB, 阅读权限: 90, 下载次数: 7, 下载积分: 威望 -10 点

1

回复

使用道具 举报

发表于 2011-6-24 19:17:16 | 显示全部楼层
说什么的?
回复 支持 反对

使用道具 举报

 楼主| 发表于 2011-6-24 22:02:25 | 显示全部楼层
Although almost any book and/or text on metal cutting, cutting tool design, and 6 V/ E) P3 t& l" X. Z
manufacturing process discusses to a certain extent the tool geometry, the body of % y( |% |0 S+ p2 S# B
knowledge on the subject is scattered and  confusing. Moreover, there is no clear
, ~; Q  i1 G& k4 W6 i! [objective(s) set in the selection of the tool geometry parameters so that an answer 0 C9 H; M; }! @! l( x# M
to a simple question about optimal tool geometry cannot be found in the literature 1 }/ z7 ~1 j: J1 t+ T$ p1 f
on the subject. This is because a criterion (criteria) of optimization is not clear, on
1 F* c) v4 M% \8 W8 x: Hone hand, and because the role of cutting tool geometry in machining process 8 n) |& @; r( T' a+ u( e+ L* @2 L1 T
optimization has never been studied systematically, on the other. As a result, many
- C8 _8 K4 N. J; z( Dpractical tool/process designers are forced to use extremely vague ranges of tool ) x1 ~1 R9 Y% m2 G
geometry parameters provided by handbooks. Being at least 20+ years outdated,
9 [# K& ?# p0 Q4 L7 G9 Q/ }these data do not account for any particularities of a machining operation including 3 I6 X8 C/ X4 n  A# D' U+ @
a particular grade of tool material, the condition of the machine used, the cutting % `* Q1 S4 y: O! _  m% W0 d0 k# h: H
fluid, properties and metallurgical condition of the work material, requirements to
; O7 c3 T2 T9 M1 Cthe integrity of the machined surface, etc. - b  @; E$ I/ g& D0 T) E
Unfortunately, while today's professionals, practitioners, and students are 3 Q3 p% A# `, i, O  \& D
interested in cutting tool geometry, they are doomed to struggle with the confusing
0 }% `2 |! F# h0 f$ ?! v8 l$ s( bterminology. When one does not know what the words (terms) mean, it is easy to : G0 W8 ?$ |% u* N4 q
slip into thinking that the matter is difficult, when actually the ideas are simple, 2 L/ p: z$ }9 }" a8 h2 |4 w1 b
easy to grasp, and fun to consider. It is the terms that get in the way, that stand as a
  t6 Y9 F% Y: n6 R/ R7 [1 ewall between many practitioners and science. This books attempts to turn those % M" M1 X3 a* ^3 r4 s% c6 O
walls into windows, so that readers can peer in and join in the fun of proper tool
$ e  q: O5 V$ u+ \$ v: edesign.
6 [& p+ @* x; z  R3 ^* P& p/ [. h5 jSo, why am I writing this book? There are a few reasons, but first and foremost, 5 [( U1 M, ~, i* Z
because I am a true believer in what we call technical literacy. I believe that
6 X3 v1 u" L3 {8 H, A# n+ meveryone involved in the metal cutting business should understand the essence and 2 Z" \( b! \2 ^& R5 J" i- i
importance of cutting tool geometry. In my opinion, this understanding is key to
6 `+ n2 v( U* k4 v9 ?! M/ R1 }improving efficiency of practically all machining operations. For the first time, this 3 k- g: j, a, c! A- Y% ^6 Q5 n
book presents and explains the direct correlations between tool geometry and tool
0 ~: o. E; [9 V# _performance. The second reason is that I felt that there is no comprehensive book & n- S$ r) o! p5 Q
on the subject so professionals, practitioners, and students do not have a text from " `5 x) E, Y8 R" p" F
which to learn more on the subject and thus appreciate the real value of tool
+ D. Z9 B# W, k. \, g8 Wgeometry. Finally, I wanted to share the key elements of tool geometry that I felt - n, p7 C4 u7 _" k
were not broadly understood and thus used in the tool design practice and in ; Z5 P2 ^- {3 v% ?! m: E
optimization of machining operations in industry. Moreover, being directly
& F$ C0 o! u! y/ }involved in the launch of many modern manufacturing facilities equipped with
2 h3 s1 F$ M5 C5 X) p4 a% c) cstate-of-the-art high-precision machines, I found that the cutting tool industry is not $ \, ?9 d, H7 L. T" r4 u
ready to meet the challenge of modern metal cutting applications. One of the key
" i8 y- }8 H0 }' K  iissues is the definite lack of understanding of the basics of tool geometry of
' P$ F- T' R9 j* w0 g; x  d& M1 Q* Fstandard and application-specific tools. 1 N- U- D0 l% k7 V. G
The lack of information on cutting tool geometry and its influence on the : ]: I# P, O! D2 C: o2 E  B( v0 s
outcome of machining operations can be explained as follows. Many great findings
0 k, q$ j+ G/ E# K- eon tool geometry were published a long time ago when neither CNC grinding ; U7 j& G/ R% M  h
machines capable of reproducing any kind of tool geometry were available nor
9 ~6 c# j2 G' d; ewere computers to calculate parameters of such geometry (using numerical
: p, B  ^& J, a. emethods) common. Manual grinding using standard 2- and 3-axis simple grinding
) p1 l- G8 O: v( Z- ?' Q  Cfeatures was common so the major requirement for tool geometry was the simpler ! k6 ^2 T- i5 Q/ q2 K+ q* d
the better. Moreover, old, insufficiently rigid machines, aged tool holders and part / k! e7 z7 L" L4 W* Q7 }; D+ q/ P2 l
fixtures, and poor metal working fluid (MWF) selection and maintenance levered ; F# d# t; ~7 D
any advancement in tool geometry as its influence could not be distinguished under 6 H, G5 W% _& ]" w1 r  g
these conditions. Besides, a great scatter in the properties of tool materials in the
) r9 L5 \) z& R0 rpast did not allow distinguishing of the true influence of tool geometry. As a result, ) _# o. Z3 v9 O- n4 d$ Z* R
studies on tool geometry were reduced to  theoretical considerations of features of
. y) l3 V" ~* S, v; otwist drills and some gear manufacturing  tools such as hobs, shaving cutters, 1 p% V3 S% }3 b' Z4 r& n  @
shapers, etc.  
8 n9 \# r; w1 g$ ]+ N% GGradually, once mighty chapters on tool geometry in metal cutting and tool ) {- |- T( c4 ~  K, U( j
design books were reduced to sections of few pages where no correlation between
' @5 g2 b$ k0 U% }tool geometry and tool performance is normally considered. What is left is a
7 E$ R' c- {5 P( v( ^general perception that the so-called “positive geometry” is somehow better than 6 t" y6 f+ H' i7 ?" j, o  y* p
“negative geometry.” As such, there is no quantitative translation of the word
4 w: L" x1 D& y& h6 V3 `“better” into the language  of technical data although a great number of articles
/ R4 e* ~- S& x+ U5 c# ^( H. Y- @& `1 fwritten in many professional magazines discuss the qualitative advantages of
2 w7 r4 _5 {2 v0 U/ O' k! C5 h# o2 o“positive geometry.” For example, one popular manufacturing magazine article
+ ]0 f. s0 U& Cread “Negative rake tools have a much  stronger leading edge and tend to push $ b4 o3 ?1 k. H+ d9 ~
against the workpiece in the direction of the cutter feed. This geometry is less free " O. m3 c5 o5 z+ \" o! q: s
cutting than positive rakes and so consumes more horsepower to cut.” Reading 5 b5 Y: }' W4 f& S* I& \
these articles one may wonder why cutting tool manufacturers did not switch their
; V+ G" D0 L. [, mtool designs completely to this mysterious “positive geometry” or why some of ! k+ B% Q' F/ n0 V" y( i& X& Z1 n& P
them still investigate and promote negative geometry.
& R: `% M, `0 h4 dDuring recent decades, the metalworking industry underwent several important
# L& A- `  N4 D9 m1 D$ x9 x  Ochanges that should bring cutting tool geometry into the forefront of tool design
4 e1 J% p5 N! m' v. }: |. q- ?and implementation:
回复 支持 反对

使用道具 举报

 楼主| 发表于 2011-6-24 22:03:42 | 显示全部楼层
1   What Does It Mean “Metal Cutting”? ...........................................................1
  ~- V( \) z/ A' t1 ?1.1   Introduction ...............................................................................................1 ! n& P. F: ]& }0 Q/ U& I4 R" Y
1.2   Known Results and Comparison with Other Forming Processes ..............2
4 V2 h  @/ X% z6 n# h$ C1 Q+ i2 Q  1.2.1   Single-shear Plane Model of Metal Cutting ...................................2
6 [! a6 b2 k- R1 V1 N! }% C  1.2.2   Metal Cutting vs. Other Closely Related Manufacturing  , m+ C9 \) ^& e
Operations .................................................................................................5 8 B4 `2 x4 b  l1 {
1.3   What Went Wrong in the Representation of Metal Cutting?...................22
  |$ Z. x/ m. Y+ O; }, w  1.3.1   Force Diagram..............................................................................23
- o0 E) v* V  w! ~8 {3 m+ X  1.3.2   Resistance of the Work Material in Cutting.................................25
8 _! B& C- H1 ?0 @  1.3.3   Comparison of the Known Solutions for the Single-shear  3 s  e2 ^& N3 M% K1 S: j* q
  Plane Model with Experimental Results .................................................27
( `8 }7 d! `# V9 k0 O. F* z& @, F1.4   What is Metal Cutting?............................................................................28 ' P: g! e5 s9 @: @$ P! i
  1.4.1   Importance to Know the Right Answer........................................28 " C3 ?+ G1 a9 A3 C
1.4.2  Definition .....................................................................................28
. L- M. e; p" V) [2 j1 u# T/ Z  1.4.3   Relevance to the Cutting Tool Geometry.....................................29 , e) U8 G. H  B& D
1.5   Fundamental Laws of Metal Cutting.......................................................32 - X- T; b# t+ ?
  1.5.1   Optimal Cutting Temperature – Makarow’s Law........................32 : P) p1 ?# D+ Y
1.5.2  Deformation Law.........................................................................35
: M2 |! T; {& ]6 @: mReferences........................................................................................................50 8 m( X) F9 m/ n: u8 Y1 e
2   Basic Definitions and Cutting Tool Geometry,  
2 C1 S# a* j& v3 u9 |+ _Single Point Cutting Tools ............................................................................55 , P% b& s) b6 T) y+ v
2.1   Basic Terms and Definitions ...................................................................55 3 z( z8 i$ s  p. K6 j
2.1.1  Workpiece Surfaces.......................................................................57 ' K( k+ q8 I) G) A; `0 m
2.1.2  Tool Surfaces and Elements ..........................................................57 3 l9 a2 k% F; C
2.1.3  Tool and Workpiece Motions.......................................................57 # j1 d- u) o/ L' n8 g
2.1.4  Types of Cutting ............................................................................58
) Q2 I% ]1 ^7 I; O# i7 h2.2   Cutting Tool Geometry Standards...........................................................60
+ `  H$ y6 d/ y* A0 d% T  s2.3   Systems of Consideration of Tool Geometry ..........................................61 ! u- {( V0 I( K
2.4.  Tool-in-hand System (T-hand-S) .......................................................64
% a4 Q0 x1 B7 S' F0 s  2.4.1   Tool-in-hand Coordinate System.................................................64 . I0 M- c8 A1 y( P; @: Z) L
2.4.2  References Planes ........................................................................66 . C8 I, a! t- e& r
2.4.3  Tool Angles..................................................................................68
7 E7 v/ A1 R3 y+ B1 E& P& E  2.4.4   Geometry of Cutting Tools with Indexable Inserts ......................74 ; E) Z- i. m* y( \# w" D
2.5   Tool-in-machine System (T-mach-S)......................................................84
* v9 {& `8 ?% `) Q& e 2.5.1  Angles ..........................................................................................84 & N# P6 Y. w# m' D
  2.5.2   Example 2.3 .................................................................................88
% k! S  A' D' q2.6   Tool-in-use System (T-use-S) .................................................................90
; R/ [& O/ h- ]4 Q6 S. J 2.6.1  Reference Planes ..........................................................................91
8 V$ F8 U3 ^3 W8 Q5 D# v  F& Z 2.6.2  The Concept .................................................................................92
$ Z: l) B$ z& f% K, e& z* s7 Y/ g  2.6.3   Modification of the T-hand-S Cool Geometry .............................92 ) c/ w- @, |+ P3 @) j
  2.6.4   Kinematic Angles.........................................................................98
3 i7 c2 T$ z- x/ n3 S, N5 {  2.6.5   Example 2.4 ...............................................................................100 6 h3 B! G1 b) W' ?- ?7 p, X. ?
2.7   Avalanched Representation of the Cutting Tool Geometry  % j, `. |) B2 M7 a* _0 U
in T-hand-S............................................................................................102
1 s6 ~) Z% y- \% y' J 2.7.1  Basic Tool Geometry .................................................................102
5 c7 Y# K2 s& x) a" n: h2.7.2   Determination of Cutting Tool Angles Relation 2 s9 n- X& z+ ^$ p
  for a Wiper Cutting Insert ..........................................................108
% T  f4 I2 d6 U4 d! j9 t  2.7.3   Determination of Cutting Tool Angles  % {% ?  A. ?0 S- U6 g3 X) ^& U
   for a Single-point Tool ...............................................................110
3 b+ W( y# k2 N2 P4 c, |  2.7.4   Flank Angles of a Dovetail Forming Tool .................................117
' }3 N; U. b7 ]. b  2.7.5   Summation of Several Motions..................................................119 ; |- Y: ?7 m; F# I! Z
References......................................................................................................125
  Y% `) k) z( l6 _% d6 C! I3  Fundamentals of the Selection of Cutting Tool Geometry Parameters...127 8 S. u& V* E- f# N
3.1   Introduction ...........................................................................................127 1 a' V: [. ?% A7 C' d8 h- f
3.2   General Considerations in the Selection of Parameters  $ }2 ?/ I6 H/ h$ a& H1 C0 R
  of Cutting Tool Geometry .....................................................................129
2 L+ f( `( o# r4 }4 @4 T 3.2.1 Known Results .............................................................................129 6 y' S3 G* g! ~2 x4 Q) M2 H: K: u  C
  3.2.2 Ideal Tool Geometry and Constrains............................................130
2 }% r, ]' h% f0 H- Y  3.2.3 Practical Gage for Experimental Evaluation of Tool Geometry...132 ! s, e' a& y4 ~: k* D( w! r' N
3.3   Tool Cutting Edge Angles .....................................................................132 ' [" |  w5 x( R
3.3.1  General Consideration................................................................132
1 A/ w. ~, g$ ?( v. J& D) G3 w  3.3.2   Uncut ChipT in Non-free Cutting ..............................................134
5 ]# d5 |" \" P8 [( T- N$ B. H  3.3.3   Influence on the Surface Finish..................................................142
" c" G! S+ O3 i4 E 3.3.4  Tools with κr > 90°.....................................................................144 - W8 V0 d( L% L3 M# O: I; z4 C  y
  3.3.5   Tool Minor Cutting Edge Angle ................................................147
8 s, ]2 O8 V# ~3.4.  Edge Preparation ...................................................................................161 3 V+ A8 @$ M2 j
3.4.1  General .......................................................................................161 9 N4 [- q6 N2 v7 Z
  3.4.2   Shape and Extent........................................................................163
- Q/ I9 c$ b* @' D 3.4.3  Limitations .................................................................................163 5 a8 u, o% N' o; U4 G9 i
  3.4.4   What Edge Preparation Actually Does.......................................169 : p9 \3 [$ J  l
3.5   Rake Angle............................................................................................171 ) \  w6 y- {$ S: @
3.5.1  Introduction................................................................................171 # P9 T9 b3 [! |8 ]4 P" _* ]
  3.5.2   Influence on Plastic Deformation and Generazliations ..............175 ; O. J+ C6 M; y' a9 _
  3.5.3   Effective Rake Angle .................................................................183 0 x- j8 u7 ~7 I/ O% ?
  3.5.4   Conditions for Using High Rake Angles....................................189
$ r7 t$ I. \8 U* Y: _, y3.6   Flank Angle ...........................................................................................191
9 a; a3 \6 ^2 A; m2 S! C# a3.7   Inclination Angle...................................................................................193 2 r+ j+ h+ u! _9 W4 W
      3.7.1   Turning with Rotary Tools.........................................................195 / W+ x4 w4 K' w7 x8 `0 O* m- X
3.7.2  Helical Treading Taps and Broaches..........................................197
4 g+ Y/ d+ u- b0 \" O 3.7.3  Milling Tools..............................................................................198
2 g2 m$ C7 G# p( f8 K/ R/ fReferences......................................................................................................201
9 Z- F! Z6 P) O* n" v. q/ r" p4   Straight Flute and Twist Drills ...................................................................205 * q6 r! j) m' m4 @, b  ?
4.1   Introduction ...........................................................................................205 6 |' ^) Q2 v2 s* n+ L' f& C
4.2   Classification.........................................................................................206 3 R9 W3 ]% B' r0 f1 \9 b9 J6 t2 M
4.3   Basic Terms...........................................................................................208 7 M  w3 s& F7 v  |8 v+ z4 W0 J8 I) C
4.4   System Approach ..................................................................................211 + B, L  J3 g; ^) x, R) G4 b* R$ U
4.4.1  System Objective .......................................................................212
  G: {% S  M1 H' u7 w 4.4.2  Understanding the Drilling System............................................212 5 E1 p' d) u/ w. T  n7 {
  4.4.3.  Understanding the Tool..............................................................212 2 a; e7 x+ ~" P" m# @6 r
4.5.  Force System Constrains on the Drill Penetration Rate ........................213
' t. r: L7 P* e* S) R& u  4.5.1   Force-balance Problem in Conventional Drills ..........................213
& J5 Z# C* p8 ^  4.5.2   Constrains on the Drill Penetration Rate....................................218
' d$ h& v% \1 P 4.5.3  Drilling Torque ..........................................................................219 * _% y/ g+ A9 |$ F& @6 |" ~
4.5.4  Axial Force.................................................................................220 : \5 z5 |, _1 S; f; }$ L4 H
  4.5.5   Axial Force (Thrust)-torque Coupling .......................................221 7 a) Y* n5 f- `! I2 S& [
4.6   Drill Point ..............................................................................................223 $ i% M: w  T8 C* [
4.6.1  Basic Classifications ..................................................................223
2 D5 v- J0 S2 Y5 P& ^  4.6.2   Tool Geometry Measures to Increase the Allowable  3 f* f' q! t3 O4 f% `: @+ U  A2 X
Penetration Rate ....................................................................................224 0 P( M& j7 l1 D) r% v6 v9 T( b
4.7   Common Design and Manufacturing Flaws..........................................259 : b) a8 W) f$ [4 d1 Q  K8 K% j( s
  4.7.1   Web Eccentricity/ Lip Index Error.............................................260 : W  @3 O% a9 d; t$ K- Q, c' _/ m
  4.7.2   Poor Surface Finish and Improper Tool Material/Hardness.......261
0 {0 H# v" [% h. f* [6 W) Q 4.7.3  Coolant Hole Location and Size.................................................263
# a/ _, j  p8 N& i( |9 P4.8   Tool Geometry ......................................................................................267
+ I0 T4 r8 r, G" i5 B  4.8.1   Straight-flute and Twist Drills Particularities............................269 5 n$ ~7 c  ~0 c$ R" @" |
  4.8.2   Geometry of the Typical Drill Point ..........................................270 / m  j$ V( _* Q, C$ I! g
  4.8.3   Rake Angle.................................................................................272 - D( [! E8 e3 s/ q
  4.8.4  Inclination Angle .........................................................................280
  D  W& o+ s, q+ `5 f8 C! ^5 }$ J 4.8.5  Flank Angle................................................................................281
- t6 K# p( A) t! s6 A* j  4.8.6   Geometry of a Cutting Edge Located at an Angle  
1 W8 U$ A0 {! |6 U7 ~9 b0 a, }% a. H   to the y0-plane ............................................................................292
0 A0 t4 d0 `" z7 w+ r 4.8.7  Chisel Edge ................................................................................295 - e) N3 R5 N. f* J0 m1 n0 j% R+ v
  4.8.8   Drill Flank is Formed by Two Planes: Generalization...............306 6 n  F9 `2 T: \- s( x4 X
  4.8.9   Drill Flank Angle Formed by Three Planes ...............................310
% U- H  P1 D6 u# m/ }) R! T" Z9 V2 Z 4.8.10  Flank Formed by Quadratic Surfaces.........................................313 9 v! t/ r* ]! A" @  }: O
4.9   Load Over the Drill Cutting Edge .........................................................324
1 G& a: U' D5 w; {1 M, C   4.9.1   Uncut Chip Thickness in Drilling ..............................................325
1 \2 q- d. Y1 G* p. o  4.9.2   Load Distribution Over the Cutting Edge ..................................327 1 k0 v3 T! ]' H
4.10  Drills with Curved and Segmented Cutting Edges ................................328
, `. N7 p. ?: N  P/ l' r% t: F' S  4.10.1 Load of the Cutting Part of a Drill with Curved Cutting Edges .329 5 J% w& W5 e% J. ~2 i, p
  4.10.2 Rake Angle.................................................................................332 " ~9 S  P' N3 J4 f
References......................................................................................................337
+ m& N/ b; X$ }" M* q2 O0 d5   Deep-hole Tools............................................................................................341
0 C  J% W$ p! B; k  ^, q9 n3 k5.1   Introduction ...........................................................................................341
# x7 t# ~7 ]8 _. _" ]. C) G/ W+ D; P5.2   Generic Classification of Deep-hole Machining Operations.................343 % I% {+ X' u+ p" F+ X& ^
5.3   What Does ‘Self-piloting Tool’ Mean? .................................................345
& I+ |7 }2 {6 Y7 p  5.3.1   Force Balance in Self-piloting Tools..........................................345 , Y$ v, L. b9 k& n
5.4   Three Basic Kinematic Schemes of Drilling .........................................350
" W9 f4 C" E: c, ^# _( y2 r  5.4.1   Gundrill Rotates and the Workpiece is Stationary .....................351 / Z$ J$ L0 E) c7 d/ t9 h
5.4.2  Workpiece Rotates and the Gundrill is Stationary .....................352 ( b1 \/ E) z' n7 c% y
5.4.3  Counterrotation ..........................................................................352
! ]9 V0 }7 n; \. {; B, Y: W5.5   System Approach ..................................................................................353
4 }/ T5 e1 k3 O9 e% s. n" Y; ]! I  5.5.1   Handling Tool Failure ................................................................353 $ y# }% q" ~/ V9 N4 ?
5.5.2  System Considerations ...............................................................354
4 D3 f: o4 F0 N; H5.6   Gundrills................................................................................................362
1 s3 n& R9 H2 S+ S0 d' v 5.6.1  Basic Geometry..........................................................................362 0 p: q: @  h8 i( y; ?* L
5.6.2  Rake Surface ..............................................................................365 ( [% w8 X4 X* q' u
  5.6.3   Geometry of Major Flanks .........................................................370   U$ ~2 N, x; A0 ]/ j/ [) r6 }
5.6.4  System Considerations in Gundrill Design ................................390
  _( p# W5 w) k" a- j4 O5.6.5   Examplification of Significance of the High MWF Pressure
' @" O3 a4 M4 V- n; B% s  in the Bottom Clearance Space ..................................................423
2 e: {! I- ~# \; P$ k" W" T, v% s  5.6.6   Example of Experimental Study ................................................425 " |6 D1 J, ~. u  p+ {/ b& F
  5.6.7   Optimization of Tool Geometry.................................................439
( D8 y* ?  J1 }5 x, ^. z9 rReferences......................................................................................................440
, M( _" Q6 e% z: ~9 z6 [3 KAppendix A  
8 u9 M. |1 m% K( g" P$ j4 MBasic Kinematics of Turning and Drilling.......................................................443 + `7 R' i) ~* U! F0 L* E" L
A.1   Introduction ...........................................................................................443
; w& ^5 n( ?9 ?A.2  Turning and Boring ...............................................................................444
* X; d# ]8 R. u+ \1 o2 w8 u  A.2.1  Basic Motions in Turning...........................................................444 7 c9 M' g! R9 ~. Q, E# p& ]% ~9 i
  A.2.2  Cutting Speed in Turning and Boring ........................................448 ! Q' P3 P$ }5 d' Y) H" p
  A.2.3  Feed and Feed Rate ....................................................................448 8 q6 l" o* F) \
  A.2.4  Depth of Cut...............................................................................449
4 f7 _& T. p1 F5 \ A.2.5  Material Removal Rate ..............................................................449 ( `4 B9 f! U+ |9 T
A.2.6  Resultant Motion........................................................................450 8 @  k. s. s1 A/ W) o: _
A.3  Drilling and Reaming ............................................................................450 * s7 G8 D: f8 X; k8 {; E0 F  f
A.3.1  Basic Motions in Drilling...........................................................450   _9 x0 p4 _/ V2 l
A.3.2  Machining Regime.....................................................................451 : q; B, x- N/ s  }0 B; f
A.4  Cutting Force and Power .......................................................................453 % p/ u+ J( {5 ]/ \. h
  A.4.1  Force System in Metal Cutting...................................................453 & o" j4 L7 h4 `$ R
  A.4.2  Cutting Power ............................................................................454
) {/ d$ m) v+ ?  H0 c A.4.3  Practical Assessment of the Cutting Force.................................455 , I  x$ K/ ]4 X1 O# K% k* K" y
References......................................................................................................461 9 w1 [( k: q7 v; q' _
Appendix B  2 u3 }( V1 A7 E
ANSI and ISO Turning Indexable Inserts and Holders.................................463
1 M7 e1 R3 N7 ]B.1   Indexable Inserts ...................................................................................463
$ E, f+ Q+ i3 d; I1 a  B.1.1  ANSI Code .................................................................................464 ! m1 b& ]+ [9 M
B.1.2  ISO Code....................................................................................471
! F( n7 ~: k: z  B.2 Tool Holders for Indexable Inserts (Single Point Tools) ......................491
: F: d" O7 U; G" O. w( U  B.2.1   Symbol for the Method of Holding Horizontally Mounted  
% v, v5 X* C/ @ Insert – Reference Position (1) ..............................................................492
; o8 s* ]% H& _8 g2 V$ d) K  B.2.2   Symbol for Insert Shape – Reference Position (2) .....................493 : u5 N' w+ ^$ h$ t% W' y' d
  B.2.3   Symbol for Tool Style – Reference Position (3) ........................493
3 q0 w# A5 R; s( q6 p% ?4 Y0 U  B.2.4   Letter Symbol Identifying Insert Normal Clearance –  
, ]% y& y: u( E3 p! e3 h   Reference Position (4)................................................................494 : u; w$ c6 I. m5 n
  B.2.5   Symbol for Tool Hand – Reference position (5) ........................494 * Z: ]' i; I) ?' Y' G
  B.2.6  Symbol for Tool Height (Shank Height of Tool Holders  
" e' p9 f  T# O! N7 P; C    and Height of Cutting Edge) - Reference Position (6) ...............494 5 J/ w) S/ B3 {( X3 Z8 [
  B.2.7  Number Symbol Identifying Tool Holder Shank Width –  
( e) [' M+ ]( G9 F9 P   Reference Position (7)................................................................495 1 K8 n9 |4 n9 q7 t, H
  B.2.8  Number Symbol Identifying Tool Length –  $ K5 I% {# P/ x& D0 W, T) x
   Reference Position (8)................................................................495 2 Y' X% u, F% `* g* H
  B.2.9   Letter Symbol Identifying Indexable Insert Size –  , ^5 |) G, j$ |" D. g
   Reference Position (9)................................................................497
7 O1 Y* i0 n/ Q2 i, q6 \# pAppendix C  
1 c3 Y9 P' S9 Q+ E) |! l/ H% @Basics of Vector Analysis ..................................................................................499 % g. S6 @  C8 V% h8 X2 k+ L
C.1   Vectors and Scalars ...............................................................................499 3 O6 z8 d8 b3 X' N' W
C.2   Definition and Representation...............................................................500
# h8 F6 F6 V+ n, W C.2.1  Definitions..................................................................................500 0 D3 j' ]4 X1 z! J
C.2.2  Basic Vector Operations ............................................................503   I2 {+ D; X  ]7 t
C.3   Application Conveniences.....................................................................509 % P/ B4 C/ ]8 W9 d) V# [# r
C.4  Rotation: Linear and Angular Velocities...............................................511
- I# l  n& O5 n8 W$ u  C.4.1   Planar Linear and Angular Velocities ........................................511
1 D3 M! h" ^& x" n; p3 @8 ^  C.4.2   Rotation: The Angular Velocity Vector .....................................515
% o6 x7 `' a" T3 j  d: wReferences ...........................................................................................................518 : h5 i4 M. \3 w$ G2 N) ~# L
Appendix D  
3 o3 v* e% C0 Z. a( q$ J& THydraulic Losses: Basics and Gundrill Specifics............................................519
  e4 A6 L: J6 H$ Y: h" ?- z  HD.1  Hydraulic Pressure Losses – General ....................................................519 ; T' a, J4 X$ t0 `) g& t( `2 O
D.1.1  Major Losses: Friction Factor ....................................................520 " L6 x) G! j" [: W) ?
  D.1.2  Minor Losses (Losses Due to Form Resistance) ........................521
8 m8 y, _+ W; D6 w- o4 ?- z9 U( a" A D.2  Concept of the Critical MWF Velocity and Flow Rate .........................521 ) a1 \# _' D1 [7 T: R" \
  D.2.1  MWF Flow Rate Needed for Reliable Chip Transportation.......522
1 J: I# Z/ E( z( w* W6 e  D.2.3  Example D.1...............................................................................527
& L; e/ _: n" N: A, G: \D.3   Inlet MWF pressure...............................................................................528 $ P1 e: W. [1 g1 T2 p% r
D.4  Analysis of Hydraulic Resistances ........................................................532
7 i/ I5 M+ P/ L6 t  D.4.1  Analysis of Hydraulic Resistances Over Which the Designer  & w- J% y+ w1 r+ W* X! d/ T
    Has No or Little Control ............................................................532 * u7 D3 O* G/ r" {
  D.4.2  Variable Resistances Over Which the Designer Has Control ....535 5 O* _* i4 M, H5 g0 M
D.5   Practical Implementation in the Drill Design ........................................539 ) ^' A7 O! [1 N, Q; n
References ..........................................................................................................543 8 l, M  A  b; P$ P2 ^
Appendix E
* o" t& {) X9 Y" Q" URequirements and Examples of Cutting Tool Drawings................................545 $ ^2 M% R& S* p3 i/ Z
E.1   Introduction ...........................................................................................545 / S5 w' Z. {* p5 b! z  G: ]# m
E.2   Tool Drawings – the Existent Practice ..................................................546 0 l' ]$ R+ @# S
E.3   Tool Drawing Requrements ..................................................................548
% l1 t0 ]& E8 ^) i1 ZE.4   Examples of Tool Drawing ...................................................................553
; c. Y) E! K! |& x* WReferences ..........................................................................................................559 ( w8 r; q  ]+ Y8 x
Index…………………………………………………………………………….561 * I2 {: k4 a  C5 K* Q8 c/ v
. A' p* r( F( S2 F9 K
8 {* U; j: v8 \9 K+ D# v
回复 支持 反对

使用道具 举报

发表于 2011-6-25 13:07:50 | 显示全部楼层
都是些神马?
回复 支持 反对

使用道具 举报

发表于 2011-6-25 13:33:41 | 显示全部楼层
埋头挖矿中。。。。。。。。。
回复 支持 反对

使用道具 举报

发表于 2011-6-26 15:14:56 | 显示全部楼层
好东西啊。。。只是,刀具不是我的工作。。。顶起,不沉。。。
回复 支持 反对

使用道具 举报

 楼主| 发表于 2011-6-26 18:10:54 | 显示全部楼层
专业人士自有看法。
回复 支持 反对

使用道具 举报

发表于 2011-6-27 18:42:38 | 显示全部楼层
好东西啊,英文的,看着太费劲了
回复 支持 反对

使用道具 举报

发表于 2011-6-27 21:53:22 | 显示全部楼层
从网上查找这本书是Springer Series in Advanced Manufacturing丛书中的一本% U! C+ D* p8 C8 ~! Q) b
请问这套丛书共包含哪几本书
回复 支持 反对

使用道具 举报

您需要登录后才可以回帖 登录 | 注册会员

本版积分规则

小黑屋|手机版|Archiver|机械社区 ( 京ICP备10217105号-1,京ICP证050210号,浙公网安备33038202004372号 )

GMT+8, 2025-5-2 19:15 , Processed in 0.080806 second(s), 18 queries , Gzip On.

Powered by Discuz! X3.4 Licensed

© 2001-2017 Comsenz Inc.

快速回复 返回顶部 返回列表