找回密码
 注册会员

QQ登录

只需一步,快速开始

搜索
查看: 8572|回复: 19

Geometry_of_Single_point_Turning_Tools_and_Drills

[复制链接]
发表于 2011-6-23 22:58:22 | 显示全部楼层 |阅读模式
本帖最后由 机器鼠 于 2011-6-23 23:18 编辑 8 z! H& Y5 Y4 A5 U' E6 o
7 J% \1 d, }( @. v8 A. C( H
Geometry_of_Single_point_Turning_Tools_and_Drills__Fundamentals_and_Practical_Applications.pdf' g5 y. a- f) {' S0 Q, Q
有要的吗?刀具,细节,很到位。英文版。
0 {# O, i  D1 o% W国内无人这么细研究的吧?

Geometry_of_Single_point_Turning_Tools_and_Drills__Fundamentals_and_Practical_Ap.rar

4.35 MB, 阅读权限: 90, 下载次数: 8, 下载积分: 威望 -10 点

7

Geometry_of_Single_point_Turning_Tools_and_Drills__Fundamentals_and_Practical_Ap.rar

4.35 MB, 下载次数: 7, 下载积分: 威望 -10 点

6

Geometry_of_Single_point_Turning_Tools_and_Drills__Fundamentals_and_Practical_Ap.rar

4.35 MB, 下载次数: 8, 下载积分: 威望 -10 点

5

Geometry_of_Single_point_Turning_Tools_and_Drills__Fundamentals_and_Practical_Ap.rar

4.35 MB, 下载次数: 6, 下载积分: 威望 -10 点

4

Geometry_of_Single_point_Turning_Tools_and_Drills__Fundamentals_and_Practical_Ap.rar

4.35 MB, 下载次数: 6, 下载积分: 威望 -10 点

3

Geometry_of_Single_point_Turning_Tools_and_Drills__Fundamentals_and_Practical_Ap.rar

4.35 MB, 下载次数: 6, 下载积分: 威望 -10 点

2

Geometry_of_Single_point_Turning_Tools_and_Drills__Fundamentals_and_Practical_Ap.rar

140.75 KB, 阅读权限: 90, 下载次数: 7, 下载积分: 威望 -10 点

1

回复

使用道具 举报

发表于 2011-6-24 19:17:16 | 显示全部楼层
说什么的?
 楼主| 发表于 2011-6-24 22:02:25 | 显示全部楼层
Although almost any book and/or text on metal cutting, cutting tool design, and
2 p! h( L* l% b( B, W2 tmanufacturing process discusses to a certain extent the tool geometry, the body of
& l' V: d2 W  [& X* S( z" Qknowledge on the subject is scattered and  confusing. Moreover, there is no clear 0 |. i% q$ {! \5 J% r7 C( Q0 W
objective(s) set in the selection of the tool geometry parameters so that an answer 4 u9 m7 r$ Z6 {. c
to a simple question about optimal tool geometry cannot be found in the literature 7 l" V" A+ _, x) e* }  ]
on the subject. This is because a criterion (criteria) of optimization is not clear, on " u% L: O. S# U% d
one hand, and because the role of cutting tool geometry in machining process
' e! X. }& Y0 U  q  P: eoptimization has never been studied systematically, on the other. As a result, many
$ {8 P. N! C# Wpractical tool/process designers are forced to use extremely vague ranges of tool
6 b/ b7 A  ?0 U% Rgeometry parameters provided by handbooks. Being at least 20+ years outdated,
2 X' }! s( O0 ^; \9 N4 othese data do not account for any particularities of a machining operation including 1 V) a  g2 Z5 m4 O! ?+ e# J
a particular grade of tool material, the condition of the machine used, the cutting
; M, m/ q. L( qfluid, properties and metallurgical condition of the work material, requirements to
3 y' W& f" n: k; J5 Q; Vthe integrity of the machined surface, etc. & d1 h# d1 I& n* t
Unfortunately, while today's professionals, practitioners, and students are
3 ?1 r, ]- |8 s6 v9 yinterested in cutting tool geometry, they are doomed to struggle with the confusing
! D, ]6 S$ I. W. \terminology. When one does not know what the words (terms) mean, it is easy to
% k2 j  ?: Z" P8 a3 f" yslip into thinking that the matter is difficult, when actually the ideas are simple,
3 g3 a2 ~3 D5 measy to grasp, and fun to consider. It is the terms that get in the way, that stand as a 4 @* a, ?) Q( Z6 i
wall between many practitioners and science. This books attempts to turn those + j% P2 W) @1 n( e
walls into windows, so that readers can peer in and join in the fun of proper tool
4 Z+ h! c1 O6 L: mdesign. 7 A7 h2 k' V4 s. W) i! ?8 m
So, why am I writing this book? There are a few reasons, but first and foremost,
8 h! D* P. J0 G: e4 O% wbecause I am a true believer in what we call technical literacy. I believe that
" {; u: F1 a" E! ^everyone involved in the metal cutting business should understand the essence and
# c8 c# Z3 g3 r* S" z0 vimportance of cutting tool geometry. In my opinion, this understanding is key to 3 d# `. K8 Z8 {1 \+ E% o
improving efficiency of practically all machining operations. For the first time, this ) S" [* z5 K3 f  C2 ]: H* V
book presents and explains the direct correlations between tool geometry and tool & B% t+ D( i* `" L
performance. The second reason is that I felt that there is no comprehensive book 1 Z2 `, q* S: H/ N8 Z
on the subject so professionals, practitioners, and students do not have a text from
4 L; p, V3 R& f- ^3 }which to learn more on the subject and thus appreciate the real value of tool 5 R% J1 F8 I* ?0 e
geometry. Finally, I wanted to share the key elements of tool geometry that I felt # Q' f) _. ?; I/ M) R
were not broadly understood and thus used in the tool design practice and in
3 O; ]& w. t( l2 ^optimization of machining operations in industry. Moreover, being directly * C$ I- X9 b5 y) a, V, c5 n  U
involved in the launch of many modern manufacturing facilities equipped with
- g1 u9 ^3 l9 c4 N2 xstate-of-the-art high-precision machines, I found that the cutting tool industry is not 8 @1 y% g3 O! B9 K; M9 t5 m, c
ready to meet the challenge of modern metal cutting applications. One of the key
1 |/ j/ W) D1 f# aissues is the definite lack of understanding of the basics of tool geometry of , r5 `: j1 S. f# {
standard and application-specific tools.   I3 i, a$ L* M
The lack of information on cutting tool geometry and its influence on the 6 t3 @( j5 I/ h1 H
outcome of machining operations can be explained as follows. Many great findings
; G8 k+ u5 {# J8 l' ion tool geometry were published a long time ago when neither CNC grinding
+ A: @6 Y" O% X! j8 smachines capable of reproducing any kind of tool geometry were available nor
' I* w9 x* ?0 w3 m5 k& Dwere computers to calculate parameters of such geometry (using numerical
' V$ r3 e( R; f" E5 `methods) common. Manual grinding using standard 2- and 3-axis simple grinding   \0 v) J. m( }( t# A
features was common so the major requirement for tool geometry was the simpler
8 i- U4 `  R" m$ d: o4 D+ S& c- Cthe better. Moreover, old, insufficiently rigid machines, aged tool holders and part
. h) _4 |% U+ i3 Kfixtures, and poor metal working fluid (MWF) selection and maintenance levered
- E% {1 N. |( N. \+ e% nany advancement in tool geometry as its influence could not be distinguished under % d* W1 w6 G' g6 X0 f
these conditions. Besides, a great scatter in the properties of tool materials in the . ~4 w7 z( [: c- w
past did not allow distinguishing of the true influence of tool geometry. As a result, 0 f& o, F0 |' P( M5 y  ~( F3 x" |: V
studies on tool geometry were reduced to  theoretical considerations of features of
$ G& }: ?7 @4 I$ }1 |% W- x9 _twist drills and some gear manufacturing  tools such as hobs, shaving cutters, , w8 B& l% Z* A6 g- p7 T: x( w- a$ ]6 ^" m
shapers, etc.  
4 `8 w$ z0 d- w7 sGradually, once mighty chapters on tool geometry in metal cutting and tool 4 W: z6 e7 J" r/ E7 a
design books were reduced to sections of few pages where no correlation between 8 t- V$ X4 F9 f/ {
tool geometry and tool performance is normally considered. What is left is a
# a- f. P% t0 U+ |general perception that the so-called “positive geometry” is somehow better than $ r  Q' [% x8 B1 C
“negative geometry.” As such, there is no quantitative translation of the word ; n3 t1 H/ f4 N3 {$ h
“better” into the language  of technical data although a great number of articles
! X4 k! t: ~3 a- C/ dwritten in many professional magazines discuss the qualitative advantages of 2 F- g/ d8 M5 g) n! F
“positive geometry.” For example, one popular manufacturing magazine article   F  O$ \+ B! w+ u: X
read “Negative rake tools have a much  stronger leading edge and tend to push
/ Q- S# U3 O$ F$ L0 J% Q. V3 |against the workpiece in the direction of the cutter feed. This geometry is less free
+ ]; U5 E; c6 W' ^/ @) K: _  Ncutting than positive rakes and so consumes more horsepower to cut.” Reading 2 x. E: @+ [# e) J& p( G" o
these articles one may wonder why cutting tool manufacturers did not switch their
" j1 N0 g1 U% {0 B" a- e& xtool designs completely to this mysterious “positive geometry” or why some of
( o/ B" X6 ^; v6 vthem still investigate and promote negative geometry. , [8 X) |, p/ t1 j
During recent decades, the metalworking industry underwent several important - d6 h5 n& [: D: j+ c" c, ~
changes that should bring cutting tool geometry into the forefront of tool design
1 O9 X6 I" U5 D7 s9 Wand implementation:
 楼主| 发表于 2011-6-24 22:03:42 | 显示全部楼层
1   What Does It Mean “Metal Cutting”? ...........................................................1 ! |$ X) g4 a+ C/ K# n) Z/ c8 T; p
1.1   Introduction ...............................................................................................1 $ L- {. p9 S# w6 |
1.2   Known Results and Comparison with Other Forming Processes ..............2 / v- j) @  x9 C- C; n8 J1 D. ?
  1.2.1   Single-shear Plane Model of Metal Cutting ...................................2 ; c, e. `0 b; v) W- a) l
  1.2.2   Metal Cutting vs. Other Closely Related Manufacturing  % \% H3 a+ {4 ~( {- Q9 ^4 r3 s/ m
Operations .................................................................................................5
+ X7 u* o/ `5 N; I( ~2 ]& m1.3   What Went Wrong in the Representation of Metal Cutting?...................22 # b: R5 C8 L& B' ?) s
  1.3.1   Force Diagram..............................................................................23 1 h& L8 _6 B# k0 }
  1.3.2   Resistance of the Work Material in Cutting.................................25
& s2 d. p1 i, C2 n  1.3.3   Comparison of the Known Solutions for the Single-shear  
+ }) {8 a. O* T4 I# P# q  Plane Model with Experimental Results .................................................27 4 U  I7 ~0 R, I+ Y! W( u
1.4   What is Metal Cutting?............................................................................28 / H& c' E' l0 L, ?9 W5 c5 p  w
  1.4.1   Importance to Know the Right Answer........................................28
+ b( x4 \% C, E6 _) [( @% C' f/ \ 1.4.2  Definition .....................................................................................28
* A" J, B( z) t$ W: a% g) D/ s1 T  1.4.3   Relevance to the Cutting Tool Geometry.....................................29
" v% U, f( `! ~1.5   Fundamental Laws of Metal Cutting.......................................................32 3 ~; v+ B# u$ d# U0 {8 b
  1.5.1   Optimal Cutting Temperature – Makarow’s Law........................32
. S( a7 p9 U' k+ I 1.5.2  Deformation Law.........................................................................35 + O- e) O4 b( p6 B" r- r
References........................................................................................................50 # Y' J- X' G/ _" g% ~% U% [* t
2   Basic Definitions and Cutting Tool Geometry,  5 P, z  M0 t  X0 {1 b% v2 i$ q
Single Point Cutting Tools ............................................................................55 ) E' s+ |( ^# u& r. j
2.1   Basic Terms and Definitions ...................................................................55 3 j# H5 H% _) J4 K9 J: ~
2.1.1  Workpiece Surfaces.......................................................................57 9 W8 V' S* t. J/ z$ @% V0 @; b
2.1.2  Tool Surfaces and Elements ..........................................................57
( v8 x2 c3 s  Y! a 2.1.3  Tool and Workpiece Motions.......................................................57 ) Y) i# q+ \  L4 H1 B1 ]: R8 f. p; Q
2.1.4  Types of Cutting ............................................................................58
% y/ V( ~# {* X. T2.2   Cutting Tool Geometry Standards...........................................................60 8 n6 n+ w! L# Q8 J
2.3   Systems of Consideration of Tool Geometry ..........................................61
4 v$ {7 x0 A$ w! B# c0 Z2.4.  Tool-in-hand System (T-hand-S) .......................................................64
" {: l& C6 R, R) \7 N  V  2.4.1   Tool-in-hand Coordinate System.................................................64 7 g4 a# ~% X4 q* G$ |: }
2.4.2  References Planes ........................................................................66
* {' B$ O2 |5 n# a* _9 G 2.4.3  Tool Angles..................................................................................68   c. k% @" }6 {7 i  r0 @2 ~/ G
  2.4.4   Geometry of Cutting Tools with Indexable Inserts ......................74
% l, L0 Q* b+ R( N4 E+ W' v- m2.5   Tool-in-machine System (T-mach-S)......................................................84
, o$ z2 S" m: n( M3 g' a9 h0 M 2.5.1  Angles ..........................................................................................84 5 |2 `5 g/ w3 m$ t$ F  k
  2.5.2   Example 2.3 .................................................................................88
8 H- ]$ _1 U1 p2.6   Tool-in-use System (T-use-S) .................................................................90
+ ~+ S; d+ m: X- X. W9 H7 g( W 2.6.1  Reference Planes ..........................................................................91 ) o: H- j- L4 e0 J/ ?
2.6.2  The Concept .................................................................................92
& A4 h/ P1 J9 u9 Z9 A1 t  2.6.3   Modification of the T-hand-S Cool Geometry .............................92 $ S  a/ |# T' p/ [  Q% R, t# k
  2.6.4   Kinematic Angles.........................................................................98
- X1 g/ p9 a' E2 L) q  2.6.5   Example 2.4 ...............................................................................100
9 ]6 S, ~  r) ?2 J2.7   Avalanched Representation of the Cutting Tool Geometry  
) h6 d0 |. _3 [7 D# w in T-hand-S............................................................................................102
+ ^6 L8 N" `+ Y% S, K/ |* |7 V 2.7.1  Basic Tool Geometry .................................................................102
4 R6 C# ~) `# A2 |, p! u, n: W2.7.2   Determination of Cutting Tool Angles Relation * I9 @7 O4 T( @2 c
  for a Wiper Cutting Insert ..........................................................108 , t" y% ~5 C! R0 A! z
  2.7.3   Determination of Cutting Tool Angles  
, ~& |2 U& {. r- l  Y   for a Single-point Tool ...............................................................110
* M/ e- Y6 \. A* g! u1 b6 K& n3 B& y  2.7.4   Flank Angles of a Dovetail Forming Tool .................................117 8 Z: b# [: \" h; ]+ |0 E
  2.7.5   Summation of Several Motions..................................................119 # a" D$ H/ G: k4 l$ N4 n
References......................................................................................................125
9 R. ?" \7 [( b. e: K) \3  Fundamentals of the Selection of Cutting Tool Geometry Parameters...127
# P: l, [, k8 d/ V3.1   Introduction ...........................................................................................127
& H8 j. D; @0 o8 b3.2   General Considerations in the Selection of Parameters  
- e8 `, [" g2 D8 M  of Cutting Tool Geometry .....................................................................129
5 s- K1 C% T0 W% [  q 3.2.1 Known Results .............................................................................129 4 h0 c' E! x$ o
  3.2.2 Ideal Tool Geometry and Constrains............................................130 ) X- h& [0 X8 P$ g$ \
  3.2.3 Practical Gage for Experimental Evaluation of Tool Geometry...132 # U' H3 D) R* ?* s# B% F. @* p
3.3   Tool Cutting Edge Angles .....................................................................132 % Y6 m0 _) H4 H. y+ A' W
3.3.1  General Consideration................................................................132
5 }! N! Q! f! G/ c+ v0 R  [: p: R  3.3.2   Uncut ChipT in Non-free Cutting ..............................................134
1 W1 s1 ~* t4 w* Y! L. @  `! z3 u  3.3.3   Influence on the Surface Finish..................................................142
2 ~+ D2 D/ T$ l 3.3.4  Tools with κr > 90°.....................................................................144
9 W/ n0 @6 d" T& p% a4 C6 |  3.3.5   Tool Minor Cutting Edge Angle ................................................147 0 Q8 w9 E3 r( ^$ G1 a4 s; O4 Q( ]3 X
3.4.  Edge Preparation ...................................................................................161 ; W/ B" v/ f- L& S
3.4.1  General .......................................................................................161
3 Z( p, `' L7 A, o2 D& P  3.4.2   Shape and Extent........................................................................163
9 g" ^8 e$ p, G 3.4.3  Limitations .................................................................................163
( H) S; d# O0 K  3.4.4   What Edge Preparation Actually Does.......................................169
( {) r6 M8 V8 Q% L! L3.5   Rake Angle............................................................................................171 " M! v& s6 h# N4 B
3.5.1  Introduction................................................................................171 # q) L: y$ W/ j: z1 U( l
  3.5.2   Influence on Plastic Deformation and Generazliations ..............175
* O; n- J6 ~# p, \1 T  3.5.3   Effective Rake Angle .................................................................183
& c- C+ t/ K& C7 u) O  3.5.4   Conditions for Using High Rake Angles....................................189 3 @8 L+ q+ R; o
3.6   Flank Angle ...........................................................................................191
6 m, ^- T& e- E2 G& _8 P# F3.7   Inclination Angle...................................................................................193
+ m4 y* H. d* m6 \      3.7.1   Turning with Rotary Tools.........................................................195
- D8 F! H7 H$ \4 f) m 3.7.2  Helical Treading Taps and Broaches..........................................197 ( g! i5 |; |8 z% P
3.7.3  Milling Tools..............................................................................198
0 a+ B/ v2 n. t5 W9 tReferences......................................................................................................201
' B+ v3 L; F* u6 T% w* q1 J' p# R4   Straight Flute and Twist Drills ...................................................................205 % p: G9 l, G! @$ a
4.1   Introduction ...........................................................................................205
' Z7 @; I7 _! j1 H  t4.2   Classification.........................................................................................206 , z" L% ]9 |: P
4.3   Basic Terms...........................................................................................208
) V+ [! H/ B9 J( k4.4   System Approach ..................................................................................211   V$ ]( b- a; l! y
4.4.1  System Objective .......................................................................212 ' H6 _% N) J. T
4.4.2  Understanding the Drilling System............................................212 3 p- @4 F) A5 o+ o8 h
  4.4.3.  Understanding the Tool..............................................................212 1 a* A! v/ W  P0 N' }1 Z
4.5.  Force System Constrains on the Drill Penetration Rate ........................213 ' ~. y+ J* E: w5 `2 L) w0 \$ N
  4.5.1   Force-balance Problem in Conventional Drills ..........................213
, y2 b" L; q9 Q. `, ?& J2 O2 D$ D  4.5.2   Constrains on the Drill Penetration Rate....................................218
+ z% n8 e4 [* D- u% C7 \ 4.5.3  Drilling Torque ..........................................................................219 9 R' L6 s; }" J* \2 ~, L
4.5.4  Axial Force.................................................................................220   P1 l0 f/ c. Q1 C. P/ Z* l- T! j. V
  4.5.5   Axial Force (Thrust)-torque Coupling .......................................221
0 j, O# [* ^6 G4 l. @; S( q' E4.6   Drill Point ..............................................................................................223
- \3 ^. `1 l& N' [2 F 4.6.1  Basic Classifications ..................................................................223 8 z- u  E# `* d% P0 [4 A
  4.6.2   Tool Geometry Measures to Increase the Allowable  8 w( `* ?* i' d  X: Q
Penetration Rate ....................................................................................224 ; Z" ]6 h# @* U5 r  L9 R
4.7   Common Design and Manufacturing Flaws..........................................259 $ _1 X* `- l1 E0 V/ H( j
  4.7.1   Web Eccentricity/ Lip Index Error.............................................260 * ^7 ^0 T7 u% N9 J* P1 j9 f
  4.7.2   Poor Surface Finish and Improper Tool Material/Hardness.......261 ; h; b) T% u: L: X: F% \
4.7.3  Coolant Hole Location and Size.................................................263 1 S: Z' }. d* ]# W2 M
4.8   Tool Geometry ......................................................................................267 / _6 r& w9 h- @; h/ Q  ?
  4.8.1   Straight-flute and Twist Drills Particularities............................269 + v- @; n( `; w  [4 V
  4.8.2   Geometry of the Typical Drill Point ..........................................270 + y6 N5 \" u3 f$ Z7 D
  4.8.3   Rake Angle.................................................................................272
  V8 S9 t6 W8 x* L( g  4.8.4  Inclination Angle .........................................................................280 / B5 v% ?* H% o' t& V3 Z
4.8.5  Flank Angle................................................................................281   Y3 R- |: J/ ~! z7 h3 s) Z* c
  4.8.6   Geometry of a Cutting Edge Located at an Angle  " Z) q/ Z/ H/ ?# B! k0 W; J$ H
   to the y0-plane ............................................................................292 ' @" w1 s+ T- f, h) o
4.8.7  Chisel Edge ................................................................................295 % j1 H6 m7 r, I: Q0 |! q/ Q  y2 g
  4.8.8   Drill Flank is Formed by Two Planes: Generalization...............306 / {; b  O6 I" _: ~2 S1 o
  4.8.9   Drill Flank Angle Formed by Three Planes ...............................310
8 B6 S+ J* E) c9 B$ G% i 4.8.10  Flank Formed by Quadratic Surfaces.........................................313 8 _* T) J& p. ~
4.9   Load Over the Drill Cutting Edge .........................................................324
$ q- ^* s* c: h# n* ^$ F& q" w   4.9.1   Uncut Chip Thickness in Drilling ..............................................325 9 A3 i5 c0 D& `2 [  H0 r  u
  4.9.2   Load Distribution Over the Cutting Edge ..................................327
, U: M( k- F0 c% k4.10  Drills with Curved and Segmented Cutting Edges ................................328
6 w4 G* q2 p" b# q$ B8 [! [4 \  4.10.1 Load of the Cutting Part of a Drill with Curved Cutting Edges .329 7 n4 b* w! W0 h
  4.10.2 Rake Angle.................................................................................332 2 x8 Q+ d. r( E$ Z: Y
References......................................................................................................337 5 o9 E3 m" M0 i7 I9 R# A
5   Deep-hole Tools............................................................................................341 0 R( v0 t" w9 f5 B5 d1 v2 W
5.1   Introduction ...........................................................................................341 " F. }+ P1 v/ T. Q7 J1 ~$ O( @/ P
5.2   Generic Classification of Deep-hole Machining Operations.................343
! C) ~& z( T, P* \6 |! j8 J5.3   What Does ‘Self-piloting Tool’ Mean? .................................................345
9 v( ~2 \9 M! n/ w& ]! f& P( F  5.3.1   Force Balance in Self-piloting Tools..........................................345
' U% f  q5 J0 L5.4   Three Basic Kinematic Schemes of Drilling .........................................350
5 a3 O7 I" C2 h) N7 F  5.4.1   Gundrill Rotates and the Workpiece is Stationary .....................351
% D/ ?) C# x' j, ^ 5.4.2  Workpiece Rotates and the Gundrill is Stationary .....................352 " C( M9 ^5 S; {# {! E
5.4.3  Counterrotation ..........................................................................352 2 P% l1 T( U3 D+ U. K. l$ R4 f; h
5.5   System Approach ..................................................................................353   v6 H: G7 I, Y2 U7 t2 ?$ j( L
  5.5.1   Handling Tool Failure ................................................................353
% ~4 F3 E" I1 |3 B7 e: | 5.5.2  System Considerations ...............................................................354
, V- c% s/ f1 v7 e; t: L5.6   Gundrills................................................................................................362
# W2 T% ], ^5 B7 T1 P8 ?. T 5.6.1  Basic Geometry..........................................................................362 " @2 N( }+ ~: N2 E0 C; T, {( T
5.6.2  Rake Surface ..............................................................................365
& |' S8 q. {8 f2 r& T  5.6.3   Geometry of Major Flanks .........................................................370
) p: \; \4 e: v3 P4 a 5.6.4  System Considerations in Gundrill Design ................................390
3 @7 o) X% l( H5.6.5   Examplification of Significance of the High MWF Pressure 6 i8 }5 g/ E# \$ v/ ^
  in the Bottom Clearance Space ..................................................423
: M8 p& I* K) [8 X2 H, s3 j  5.6.6   Example of Experimental Study ................................................425 / h3 {, `0 O, b7 d' Z
  5.6.7   Optimization of Tool Geometry.................................................439
( }2 O3 K$ g# V! g5 n3 F: R1 nReferences......................................................................................................440
" `* b3 z0 v# S6 HAppendix A  * \/ L6 A) z7 F
Basic Kinematics of Turning and Drilling.......................................................443
! N2 ^5 n- j& A9 A5 U* G$ cA.1   Introduction ...........................................................................................443 & w6 u- K, j0 U' k1 x) j+ n
A.2  Turning and Boring ...............................................................................444
. q. ^8 g  Z. N+ c1 ]+ B  A.2.1  Basic Motions in Turning...........................................................444
/ b5 w3 a! p7 x1 b) w. r  A.2.2  Cutting Speed in Turning and Boring ........................................448
4 i! |9 S! V5 A* l' V  A.2.3  Feed and Feed Rate ....................................................................448 & F/ O+ o# ]6 R6 R! Z( {( ?, ~
  A.2.4  Depth of Cut...............................................................................449
& L! T/ H$ a" S5 E; H2 \ A.2.5  Material Removal Rate ..............................................................449 9 d# |7 @3 P! k# b2 \* S
A.2.6  Resultant Motion........................................................................450
/ @+ m9 P% R0 D+ g: }A.3  Drilling and Reaming ............................................................................450 , [1 d# ]! y! ]1 Y0 m
A.3.1  Basic Motions in Drilling...........................................................450
& a* w: Y4 `  ]9 ] A.3.2  Machining Regime.....................................................................451
, x; `4 N' E: WA.4  Cutting Force and Power .......................................................................453 . W) Q, l0 \# |" A5 H3 ]8 D% l
  A.4.1  Force System in Metal Cutting...................................................453
3 _. i0 ~4 t% k/ D2 S  A.4.2  Cutting Power ............................................................................454 7 e2 W! X8 U) U* V
A.4.3  Practical Assessment of the Cutting Force.................................455 5 T8 K# f+ |4 d/ R4 A
References......................................................................................................461
" I  y# B+ |$ \7 w% K; Q, G. NAppendix B  ! W5 Z) S' y( G4 E
ANSI and ISO Turning Indexable Inserts and Holders.................................463 3 g/ {4 [5 W* T* F0 n, D" ]
B.1   Indexable Inserts ...................................................................................463
/ E/ [5 a: X# ]0 H2 |# E6 a  B.1.1  ANSI Code .................................................................................464
& B% ]: b2 |) d* } B.1.2  ISO Code....................................................................................471
' ~  y6 \+ S2 X4 i' {  B.2 Tool Holders for Indexable Inserts (Single Point Tools) ......................491 ' e7 F+ _' r1 e4 F, l2 @+ q1 ]
  B.2.1   Symbol for the Method of Holding Horizontally Mounted  
" F4 X- J, y( Y% n4 b Insert – Reference Position (1) ..............................................................492 ; c' q6 ]2 Q0 F# A* g9 `/ l
  B.2.2   Symbol for Insert Shape – Reference Position (2) .....................493 / W1 w+ m. ^9 \
  B.2.3   Symbol for Tool Style – Reference Position (3) ........................493
2 u1 k  M  T6 e5 L* j# R: i4 ?4 c  B.2.4   Letter Symbol Identifying Insert Normal Clearance –  
! h, X% y5 B9 l   Reference Position (4)................................................................494
- g8 G" W5 W0 _7 w  B.2.5   Symbol for Tool Hand – Reference position (5) ........................494 0 m) I( K1 I5 l2 O/ Y1 @+ l, o4 n
  B.2.6  Symbol for Tool Height (Shank Height of Tool Holders  
& @! l  }) a; X# b: o8 h* o    and Height of Cutting Edge) - Reference Position (6) ...............494   l9 H3 O3 }! h, U+ @' X& Q: i
  B.2.7  Number Symbol Identifying Tool Holder Shank Width –  2 Z1 d7 a' E2 F3 a! _1 X6 ~% t7 V
   Reference Position (7)................................................................495 5 _/ K" r' E5 X2 s) c* P
  B.2.8  Number Symbol Identifying Tool Length –  . v5 a: t: H9 W! o- o8 I: v  ~
   Reference Position (8)................................................................495
/ C; \3 _0 y3 n& w/ u0 v  B.2.9   Letter Symbol Identifying Indexable Insert Size –  & H4 h  O$ q7 q
   Reference Position (9)................................................................497 ' ?' ]+ C6 v2 I, v
Appendix C  
3 |% _2 _/ O- a  M& }" vBasics of Vector Analysis ..................................................................................499
" G2 x4 d' S' s( ^. Z9 jC.1   Vectors and Scalars ...............................................................................499 ) k7 C# a. i1 R& J  ^  m( n4 W
C.2   Definition and Representation...............................................................500
5 |' r, N: v, V/ t' E C.2.1  Definitions..................................................................................500
, \1 M- D0 W) N5 s7 |, V2 n( l5 K C.2.2  Basic Vector Operations ............................................................503 # n# E: l% X+ A/ i
C.3   Application Conveniences.....................................................................509
# O3 I+ z6 i! F2 j, a; o5 |4 QC.4  Rotation: Linear and Angular Velocities...............................................511
# ~  E' O% o7 c; W1 T  C.4.1   Planar Linear and Angular Velocities ........................................511
( B7 z; X5 x% t5 l  C.4.2   Rotation: The Angular Velocity Vector .....................................515 - m# `# B# s: ^: t0 O3 S
References ...........................................................................................................518
9 d& C2 H9 K5 E& ?9 [! AAppendix D  ' k! Y8 Z& m& j' P! `/ k
Hydraulic Losses: Basics and Gundrill Specifics............................................519
( E( t( N+ _1 z+ U8 x; _: MD.1  Hydraulic Pressure Losses – General ....................................................519
  s- ]" X1 j! f9 |: L$ r! H D.1.1  Major Losses: Friction Factor ....................................................520 % L4 r; [% h8 V
  D.1.2  Minor Losses (Losses Due to Form Resistance) ........................521
; y/ G( M4 Z/ I' D2 E D.2  Concept of the Critical MWF Velocity and Flow Rate .........................521 , G5 A: G" T6 I- c. s! u
  D.2.1  MWF Flow Rate Needed for Reliable Chip Transportation.......522 : J* L+ o) {0 D9 B+ ]/ Z5 O/ }$ b
  D.2.3  Example D.1...............................................................................527
" G" H: y+ o6 b& X- o# O2 y; A* ]D.3   Inlet MWF pressure...............................................................................528
% k& w# C0 C0 c* t) w( g; xD.4  Analysis of Hydraulic Resistances ........................................................532 : S0 Y: l, M7 B9 o3 Q
  D.4.1  Analysis of Hydraulic Resistances Over Which the Designer  
% K8 l1 F6 F4 ?0 U    Has No or Little Control ............................................................532
+ K2 \) M% c) a- A& m+ Z1 S' @% |  D.4.2  Variable Resistances Over Which the Designer Has Control ....535
0 t- W7 C/ F/ n; ]/ k8 e* KD.5   Practical Implementation in the Drill Design ........................................539
4 V" ~4 o; G. j" }7 P( P% \3 QReferences ..........................................................................................................543 & J- y5 j6 F* ]2 w1 l* O! d
Appendix E ' t+ O3 D' ?; w' T; Q  f, S
Requirements and Examples of Cutting Tool Drawings................................545 ) x: t* P2 `( E' [- l% {
E.1   Introduction ...........................................................................................545 : L" \* |; {- |, k$ O; u1 R$ L9 L& k
E.2   Tool Drawings – the Existent Practice ..................................................546
( s0 B/ r) A8 C% jE.3   Tool Drawing Requrements ..................................................................548 / E* e, g1 h% _% T! G
E.4   Examples of Tool Drawing ...................................................................553
2 |# {$ u3 v9 _. d1 k' |8 [( C% h  MReferences ..........................................................................................................559
; |. _7 X5 r0 ^8 L" ~+ QIndex…………………………………………………………………………….561 : h# c" B8 D; F0 j" i3 A. N1 R
/ b& o6 t& k, Q
3 t0 G" |* d9 U7 E( u' J
发表于 2011-6-25 13:07:50 | 显示全部楼层
都是些神马?
发表于 2011-6-25 13:33:41 | 显示全部楼层
埋头挖矿中。。。。。。。。。
发表于 2011-6-26 15:14:56 | 显示全部楼层
好东西啊。。。只是,刀具不是我的工作。。。顶起,不沉。。。
 楼主| 发表于 2011-6-26 18:10:54 | 显示全部楼层
专业人士自有看法。
发表于 2011-6-27 18:42:38 | 显示全部楼层
好东西啊,英文的,看着太费劲了
发表于 2011-6-27 21:53:22 | 显示全部楼层
从网上查找这本书是Springer Series in Advanced Manufacturing丛书中的一本
* s& a; C+ {) e- a. M1 N请问这套丛书共包含哪几本书
您需要登录后才可以回帖 登录 | 注册会员

本版积分规则

Archiver|手机版|小黑屋|机械社区 ( 京ICP备10217105号-1,京ICP证050210号,浙公网安备33038202004372号 )

GMT+8, 2025-7-15 05:10 , Processed in 0.098197 second(s), 18 queries , Gzip On.

Powered by Discuz! X3.5 Licensed

© 2001-2025 Discuz! Team.

快速回复 返回顶部 返回列表