机械社区

 找回密码
 注册会员

QQ登录

只需一步,快速开始

搜索
查看: 7569|回复: 19

Geometry_of_Single_point_Turning_Tools_and_Drills

[复制链接]
发表于 2011-6-23 22:58:22 | 显示全部楼层 |阅读模式
本帖最后由 机器鼠 于 2011-6-23 23:18 编辑
: O+ ?5 a0 M9 k9 q; R, n4 r; x7 F
; H( n3 ~: v3 K" L" a% aGeometry_of_Single_point_Turning_Tools_and_Drills__Fundamentals_and_Practical_Applications.pdf4 v1 }7 I0 q' s+ U( z9 U0 i  L  a
有要的吗?刀具,细节,很到位。英文版。) C9 s6 i5 D4 U
国内无人这么细研究的吧?

Geometry_of_Single_point_Turning_Tools_and_Drills__Fundamentals_and_Practical_Ap.rar

4.35 MB, 阅读权限: 90, 下载次数: 8, 下载积分: 威望 -10 点

7

Geometry_of_Single_point_Turning_Tools_and_Drills__Fundamentals_and_Practical_Ap.rar

4.35 MB, 下载次数: 7, 下载积分: 威望 -10 点

6

Geometry_of_Single_point_Turning_Tools_and_Drills__Fundamentals_and_Practical_Ap.rar

4.35 MB, 下载次数: 8, 下载积分: 威望 -10 点

5

Geometry_of_Single_point_Turning_Tools_and_Drills__Fundamentals_and_Practical_Ap.rar

4.35 MB, 下载次数: 6, 下载积分: 威望 -10 点

4

Geometry_of_Single_point_Turning_Tools_and_Drills__Fundamentals_and_Practical_Ap.rar

4.35 MB, 下载次数: 6, 下载积分: 威望 -10 点

3

Geometry_of_Single_point_Turning_Tools_and_Drills__Fundamentals_and_Practical_Ap.rar

4.35 MB, 下载次数: 6, 下载积分: 威望 -10 点

2

Geometry_of_Single_point_Turning_Tools_and_Drills__Fundamentals_and_Practical_Ap.rar

140.75 KB, 阅读权限: 90, 下载次数: 7, 下载积分: 威望 -10 点

1

回复

使用道具 举报

发表于 2011-6-24 19:17:16 | 显示全部楼层
说什么的?
回复 支持 反对

使用道具 举报

 楼主| 发表于 2011-6-24 22:02:25 | 显示全部楼层
Although almost any book and/or text on metal cutting, cutting tool design, and
! w3 u' |0 E+ W- Q" ?3 ^. ^: K7 omanufacturing process discusses to a certain extent the tool geometry, the body of
/ T$ Z+ r! \" f3 d- Z9 xknowledge on the subject is scattered and  confusing. Moreover, there is no clear
7 \# a/ S9 ^; y, ~* o% t4 o5 k' Yobjective(s) set in the selection of the tool geometry parameters so that an answer $ y3 Q7 u( ?) P; d7 n
to a simple question about optimal tool geometry cannot be found in the literature . h! l7 s  W$ l5 |: c" }
on the subject. This is because a criterion (criteria) of optimization is not clear, on 4 A4 I" @  {7 J9 b) d6 k2 j6 {
one hand, and because the role of cutting tool geometry in machining process
+ N* b& e5 R7 j) Toptimization has never been studied systematically, on the other. As a result, many
# k3 o, G# N" ?5 D. h+ l' upractical tool/process designers are forced to use extremely vague ranges of tool : V6 \* Y8 L, _" e
geometry parameters provided by handbooks. Being at least 20+ years outdated,
2 ?! u: W" r  l2 uthese data do not account for any particularities of a machining operation including
6 I  }3 L3 ]  d/ y0 g% ia particular grade of tool material, the condition of the machine used, the cutting 3 Z6 E3 ~; i' b  X' D! T
fluid, properties and metallurgical condition of the work material, requirements to + T: Y/ H5 y; [$ i
the integrity of the machined surface, etc.
9 j+ _  p# [9 ~) }6 AUnfortunately, while today's professionals, practitioners, and students are
! e3 E4 o1 W# q) e2 F6 P4 ]) ~interested in cutting tool geometry, they are doomed to struggle with the confusing
; ^: Q0 l+ F0 T4 O$ |terminology. When one does not know what the words (terms) mean, it is easy to + d( a7 M' P. ~1 h+ ]
slip into thinking that the matter is difficult, when actually the ideas are simple, ' `: p  y0 W1 A
easy to grasp, and fun to consider. It is the terms that get in the way, that stand as a
3 Z0 p3 j# i5 `. i4 w1 Lwall between many practitioners and science. This books attempts to turn those ' O* |. y% V( {/ D
walls into windows, so that readers can peer in and join in the fun of proper tool
: X# A  C2 J8 sdesign. % l  Y: ^$ D1 ?- ?1 ?+ \
So, why am I writing this book? There are a few reasons, but first and foremost,
: T( e8 y5 |! p; y. @because I am a true believer in what we call technical literacy. I believe that
5 f4 ~( T4 o, a1 L: Geveryone involved in the metal cutting business should understand the essence and $ V) o6 d( B( o. Q5 u- g, D
importance of cutting tool geometry. In my opinion, this understanding is key to
" i( P# \. m3 u: W* _- U) qimproving efficiency of practically all machining operations. For the first time, this
4 }8 b0 v" h! S& P$ F1 vbook presents and explains the direct correlations between tool geometry and tool 7 p! a. E) C' _0 v( S9 v
performance. The second reason is that I felt that there is no comprehensive book
  ~1 t- j! G! ~! n8 h) r" Ion the subject so professionals, practitioners, and students do not have a text from 3 T1 j9 n& x, _4 o
which to learn more on the subject and thus appreciate the real value of tool
0 m% W; ~6 p! ~7 @3 t! c" ^$ Lgeometry. Finally, I wanted to share the key elements of tool geometry that I felt # `1 E) }5 M, s; r
were not broadly understood and thus used in the tool design practice and in 5 ^( Y2 S/ h8 [. n" g3 K5 y6 ^! z
optimization of machining operations in industry. Moreover, being directly
$ u7 m. s$ c+ f! I0 Iinvolved in the launch of many modern manufacturing facilities equipped with
3 w) ?- P  n" ~* s% j  y! Wstate-of-the-art high-precision machines, I found that the cutting tool industry is not " {3 ^. q' q& G! \1 {9 r4 b$ _, O8 R
ready to meet the challenge of modern metal cutting applications. One of the key
5 M7 U; \0 J% Bissues is the definite lack of understanding of the basics of tool geometry of ; I2 {2 C; d7 b' \1 L
standard and application-specific tools.
1 S" G$ ]7 }& |4 v2 rThe lack of information on cutting tool geometry and its influence on the ( ?8 R! W. w3 Z9 S5 \0 X
outcome of machining operations can be explained as follows. Many great findings / K2 A  U/ {% }0 c, v8 o9 Y
on tool geometry were published a long time ago when neither CNC grinding
- a, s+ B8 P( t3 X1 Imachines capable of reproducing any kind of tool geometry were available nor
$ W" |' c* J' @( t8 i/ `+ Gwere computers to calculate parameters of such geometry (using numerical
2 r( Y8 C5 S4 k- ~methods) common. Manual grinding using standard 2- and 3-axis simple grinding " V/ w& z; k* X* H4 u
features was common so the major requirement for tool geometry was the simpler
& F( U9 [% Y" z4 ^+ [the better. Moreover, old, insufficiently rigid machines, aged tool holders and part
8 W' B( \0 @% d4 u) tfixtures, and poor metal working fluid (MWF) selection and maintenance levered 1 q, {& X* R% S2 L
any advancement in tool geometry as its influence could not be distinguished under + I7 O- N) r# u( N3 X: N
these conditions. Besides, a great scatter in the properties of tool materials in the
# o/ d$ ~0 v' U! f! I( \past did not allow distinguishing of the true influence of tool geometry. As a result,
7 Z2 R1 q2 U% n2 Z) K: E& t7 `studies on tool geometry were reduced to  theoretical considerations of features of 8 N- _* C! M# Q1 V
twist drills and some gear manufacturing  tools such as hobs, shaving cutters,
& P" B& i4 k0 J( g0 Vshapers, etc.  
. H6 k" s( G* GGradually, once mighty chapters on tool geometry in metal cutting and tool
7 I, x: X/ ?) j1 [$ vdesign books were reduced to sections of few pages where no correlation between
3 R# e' G  P" o' htool geometry and tool performance is normally considered. What is left is a + p- G# G9 Z/ i( [; S( d$ c
general perception that the so-called “positive geometry” is somehow better than
+ D7 |! f4 w. I“negative geometry.” As such, there is no quantitative translation of the word ! V6 e4 Z8 r% `+ K1 {& @
“better” into the language  of technical data although a great number of articles
9 M6 _5 A" F4 q3 i: \written in many professional magazines discuss the qualitative advantages of ; S6 f! ~  L# M, T+ w+ a4 N1 N
“positive geometry.” For example, one popular manufacturing magazine article
9 ^$ F* W2 H6 E$ S3 Z- I4 Lread “Negative rake tools have a much  stronger leading edge and tend to push 3 A" ~9 L6 @1 D- B
against the workpiece in the direction of the cutter feed. This geometry is less free , w3 I! j7 }7 _
cutting than positive rakes and so consumes more horsepower to cut.” Reading
" v% y* E( {8 q7 F& I! D& g, lthese articles one may wonder why cutting tool manufacturers did not switch their 3 v& y6 I4 \6 o' I+ B8 T
tool designs completely to this mysterious “positive geometry” or why some of
5 J4 ~5 r9 [/ O! c9 _5 F5 \them still investigate and promote negative geometry.
: ^; y9 Y. Y$ I9 x- fDuring recent decades, the metalworking industry underwent several important
3 z4 p+ {0 s  s" M) Achanges that should bring cutting tool geometry into the forefront of tool design % R& i, F* p0 {- B
and implementation:
回复 支持 反对

使用道具 举报

 楼主| 发表于 2011-6-24 22:03:42 | 显示全部楼层
1   What Does It Mean “Metal Cutting”? ...........................................................1 , U. K3 i" Q4 T2 U
1.1   Introduction ...............................................................................................1 " T( X8 B' v- h; B, a
1.2   Known Results and Comparison with Other Forming Processes ..............2
; V$ o5 i9 R( y/ }+ J7 k  1.2.1   Single-shear Plane Model of Metal Cutting ...................................2
/ D! {6 [* z7 _6 y  1.2.2   Metal Cutting vs. Other Closely Related Manufacturing  
, z$ s% g; G8 n& J Operations .................................................................................................5
. f3 Q$ @3 N# ^' ]9 F* y1.3   What Went Wrong in the Representation of Metal Cutting?...................22 0 R& M/ c2 }% |. l6 ~4 W
  1.3.1   Force Diagram..............................................................................23
+ C/ Y8 k% e) `* g. {6 x6 y" k  z$ V  1.3.2   Resistance of the Work Material in Cutting.................................25 8 v5 u3 J, |& E! V+ t. @0 b) U) ~
  1.3.3   Comparison of the Known Solutions for the Single-shear  
  P4 n$ P( O) E* J  Plane Model with Experimental Results .................................................27
5 |* O2 E$ _" d" F: F" K. C, P: c1.4   What is Metal Cutting?............................................................................28
* _1 S3 p, c, k1 d/ z6 j, Y* n: I  1.4.1   Importance to Know the Right Answer........................................28
/ p" @9 d' c1 g 1.4.2  Definition .....................................................................................28 - ~$ E8 I4 w- I8 g- S6 B1 @
  1.4.3   Relevance to the Cutting Tool Geometry.....................................29 , X; T) P3 f" R0 f# k! Z, @
1.5   Fundamental Laws of Metal Cutting.......................................................32 & _. V% b  e& l! d+ @+ J5 l" x
  1.5.1   Optimal Cutting Temperature – Makarow’s Law........................32 5 [/ I2 l% `% ^* H: G
1.5.2  Deformation Law.........................................................................35
7 V6 u6 n; q4 yReferences........................................................................................................50 2 L- M5 ?. _3 v' H% `6 ^
2   Basic Definitions and Cutting Tool Geometry,  
7 ~2 l0 U7 u( h8 ~/ WSingle Point Cutting Tools ............................................................................55 / W- T7 ^" k1 T. T% s2 U( \5 i( G! x
2.1   Basic Terms and Definitions ...................................................................55
! K, x# @4 C+ s  }5 } 2.1.1  Workpiece Surfaces.......................................................................57
* D# ?! q+ c; F1 M 2.1.2  Tool Surfaces and Elements ..........................................................57 : k& q8 d3 H( m& e/ C9 P" H
2.1.3  Tool and Workpiece Motions.......................................................57 & j( S3 r  k" Q" {
2.1.4  Types of Cutting ............................................................................58
9 E* K. z! n$ B2.2   Cutting Tool Geometry Standards...........................................................60 6 T  @. v5 p# x7 c4 u
2.3   Systems of Consideration of Tool Geometry ..........................................61
3 i! t+ d1 T4 i6 n$ P& x2.4.  Tool-in-hand System (T-hand-S) .......................................................64
0 }4 k: |1 t+ v- f0 q+ I  2.4.1   Tool-in-hand Coordinate System.................................................64
! S/ W3 l5 @0 S. v$ I' h2 A 2.4.2  References Planes ........................................................................66
# M& _8 A0 r) t- ^4 l7 b 2.4.3  Tool Angles..................................................................................68
+ G* j" v0 c6 E; k% \$ B6 t  2.4.4   Geometry of Cutting Tools with Indexable Inserts ......................74
+ e9 d4 K: _. R6 _) C8 }2.5   Tool-in-machine System (T-mach-S)......................................................84
. M+ u7 h, c" c% Y) { 2.5.1  Angles ..........................................................................................84
# f8 \8 E* w0 V, j  p5 |  2.5.2   Example 2.3 .................................................................................88 . |/ \! N/ Z4 N+ x+ u
2.6   Tool-in-use System (T-use-S) .................................................................90
8 X9 z/ _! ~* v; h4 J 2.6.1  Reference Planes ..........................................................................91
! s+ [8 \' y: J) e& \  m! B 2.6.2  The Concept .................................................................................92
, Z8 I" a2 l. q: v8 o  2.6.3   Modification of the T-hand-S Cool Geometry .............................92
) {. k4 \* z: V* p1 x  2.6.4   Kinematic Angles.........................................................................98 8 l" R: ~0 N$ s( u
  2.6.5   Example 2.4 ...............................................................................100
) J  t9 w0 a5 K3 \; `% l0 a& l2.7   Avalanched Representation of the Cutting Tool Geometry  
0 x- y, w/ V7 X5 [+ A% k5 ?1 W2 V in T-hand-S............................................................................................102 " ^" k% Q7 d; k8 j
2.7.1  Basic Tool Geometry .................................................................102
, e% _! i/ \' w9 B) W2.7.2   Determination of Cutting Tool Angles Relation # p/ o* b$ m& g; H! D
  for a Wiper Cutting Insert ..........................................................108 0 _- u5 S! r, n: O" j4 W
  2.7.3   Determination of Cutting Tool Angles  2 t; I; T' N7 h& U" }$ [) Y
   for a Single-point Tool ...............................................................110
( `3 E# V- n% t2 s  2.7.4   Flank Angles of a Dovetail Forming Tool .................................117 % d: x9 x: o% L: q! \4 J, \" {
  2.7.5   Summation of Several Motions..................................................119 5 _* I5 |6 S3 U1 l, }- z" O
References......................................................................................................125 " \" C; g7 e6 T+ ~+ [( G. N/ ?
3  Fundamentals of the Selection of Cutting Tool Geometry Parameters...127
) L* W+ u  S2 S% T+ B3.1   Introduction ...........................................................................................127
: J- b1 g3 u8 }4 U3 ^$ D3.2   General Considerations in the Selection of Parameters  7 w: H/ _' p( k' t- e& I- S
  of Cutting Tool Geometry .....................................................................129 7 }& W9 }( R6 M/ [$ ]1 Q3 a
3.2.1 Known Results .............................................................................129
" u; Z) Q. Z* y0 {; [" ]2 h  3.2.2 Ideal Tool Geometry and Constrains............................................130
. k  y5 v5 I, J$ ?! m; z  3.2.3 Practical Gage for Experimental Evaluation of Tool Geometry...132 2 l( c9 M: p# E% N
3.3   Tool Cutting Edge Angles .....................................................................132
( f% b* \- c) Q. x% J 3.3.1  General Consideration................................................................132
! D# a) X* D5 X7 m$ x  3.3.2   Uncut ChipT in Non-free Cutting ..............................................134
6 n6 I8 J5 t5 O& U$ C0 I  3.3.3   Influence on the Surface Finish..................................................142 & e( {9 J, a$ Z6 B# @- Q( H, A4 t  E
3.3.4  Tools with κr > 90°.....................................................................144 - e: v" A+ D  ]( F
  3.3.5   Tool Minor Cutting Edge Angle ................................................147 & e' m; n4 }/ f, a( y" E8 }7 }/ B
3.4.  Edge Preparation ...................................................................................161
: N6 S; H% s1 I1 \8 W+ r1 ]; S, Y 3.4.1  General .......................................................................................161 / d3 s6 ^- M( H  M3 o
  3.4.2   Shape and Extent........................................................................163 2 T- ~6 X- L9 f& [( G8 H) ?# X6 a' h
3.4.3  Limitations .................................................................................163 # T% x2 Q/ _# g4 }- r
  3.4.4   What Edge Preparation Actually Does.......................................169 " n1 P, B+ j+ q* E7 W) I
3.5   Rake Angle............................................................................................171
& N. \$ q: e/ c 3.5.1  Introduction................................................................................171
' v. }/ C/ M4 \( j* Q0 W! c7 T* n  3.5.2   Influence on Plastic Deformation and Generazliations ..............175
7 Z* j3 B  f1 |1 ~1 {- c* f  3.5.3   Effective Rake Angle .................................................................183 8 f. t& B, B- F8 A  l* ~
  3.5.4   Conditions for Using High Rake Angles....................................189
! }* I) x# H# q9 W: f3.6   Flank Angle ...........................................................................................191
9 _" O$ K7 t/ p# v7 w" K9 [1 Q$ `3.7   Inclination Angle...................................................................................193
$ R- u- S  r+ d% C  i3 r8 f* ~      3.7.1   Turning with Rotary Tools.........................................................195 / Q1 J) m3 X$ c2 |; |1 y
3.7.2  Helical Treading Taps and Broaches..........................................197 6 }7 {9 G( K9 u/ a9 {& M
3.7.3  Milling Tools..............................................................................198
& s( U) {; h0 i- t$ R# w9 ~4 ^References......................................................................................................201
8 c5 z0 T9 a# ~- u6 c4   Straight Flute and Twist Drills ...................................................................205 9 x2 F3 l5 ]2 v: B4 \$ }1 w( T
4.1   Introduction ...........................................................................................205
  ?/ C5 `" x+ n8 W+ A8 Q4.2   Classification.........................................................................................206
, T9 v! D/ Q5 w+ c7 p4.3   Basic Terms...........................................................................................208
8 t, ^. w* l. g6 _( k# w& l( L4.4   System Approach ..................................................................................211
/ _# B: [. Q  W4 k& t3 U- z 4.4.1  System Objective .......................................................................212
- m; G) B* U. h 4.4.2  Understanding the Drilling System............................................212
* c3 k# Y1 m% x8 Z# D% t& t  4.4.3.  Understanding the Tool..............................................................212
) Y( `8 R' c/ W* N& E& m+ Y4.5.  Force System Constrains on the Drill Penetration Rate ........................213 ' H, v. J5 [7 U4 ?
  4.5.1   Force-balance Problem in Conventional Drills ..........................213 & g/ ]8 j$ q9 ]( L
  4.5.2   Constrains on the Drill Penetration Rate....................................218 + a$ a- y1 N. ]- V1 `$ L7 U: b
4.5.3  Drilling Torque ..........................................................................219
% ?) k2 D4 d! C9 U 4.5.4  Axial Force.................................................................................220
5 X5 g: X( M2 m! E3 z2 [5 N. H  4.5.5   Axial Force (Thrust)-torque Coupling .......................................221 1 n6 n6 H, h& B0 L
4.6   Drill Point ..............................................................................................223
1 P' y  X3 M% \6 ?( g! p 4.6.1  Basic Classifications ..................................................................223 # K2 @# l& g1 S; h0 T
  4.6.2   Tool Geometry Measures to Increase the Allowable  . B3 V5 N/ g# {2 N' |
Penetration Rate ....................................................................................224
7 f( n! G  l0 H5 C4 j# Z/ m0 M4.7   Common Design and Manufacturing Flaws..........................................259 ! q1 }$ u" l$ w" h$ v
  4.7.1   Web Eccentricity/ Lip Index Error.............................................260
3 k6 T# V6 a, \. D! ~- @  4.7.2   Poor Surface Finish and Improper Tool Material/Hardness.......261
$ M( X. p$ b: }; L- n3 Z 4.7.3  Coolant Hole Location and Size.................................................263
3 ~% X: d4 i' `* H& P  O4.8   Tool Geometry ......................................................................................267 ; w5 \, `- V* u' X
  4.8.1   Straight-flute and Twist Drills Particularities............................269 . Z% y3 a3 L/ B1 \7 @- u. T
  4.8.2   Geometry of the Typical Drill Point ..........................................270
2 x, i# ]! b# v8 x# j1 `  4.8.3   Rake Angle.................................................................................272 ! V' q2 z% S( w9 m) K5 c2 U
  4.8.4  Inclination Angle .........................................................................280
+ A/ e/ a. p! { 4.8.5  Flank Angle................................................................................281 9 M$ ~' c; X: t8 U
  4.8.6   Geometry of a Cutting Edge Located at an Angle  ' V0 q# b0 H( Z" R
   to the y0-plane ............................................................................292
+ }% J+ w) K; a: e8 @# a 4.8.7  Chisel Edge ................................................................................295 ( x1 s* Q: @- \, l' h
  4.8.8   Drill Flank is Formed by Two Planes: Generalization...............306
$ z3 E; q2 s+ ^7 {1 t' f# `- c% L  4.8.9   Drill Flank Angle Formed by Three Planes ...............................310
4 z$ L( T) P5 e5 o# Q0 G 4.8.10  Flank Formed by Quadratic Surfaces.........................................313
2 R6 ?! a: P9 R, Q1 {4.9   Load Over the Drill Cutting Edge .........................................................324
! T3 B- O5 X2 [/ ?0 S& t   4.9.1   Uncut Chip Thickness in Drilling ..............................................325 3 U2 q! `, A- N) K
  4.9.2   Load Distribution Over the Cutting Edge ..................................327 1 C$ s4 T; D  \0 K
4.10  Drills with Curved and Segmented Cutting Edges ................................328   T/ z( I7 \! Y6 ^3 J7 Y. Y) d
  4.10.1 Load of the Cutting Part of a Drill with Curved Cutting Edges .329
0 T0 s4 o( H  t3 t  o0 v  4.10.2 Rake Angle.................................................................................332
0 m; F# x" k- c0 D% i) Y+ RReferences......................................................................................................337
6 k! _) I& ^  d4 G5   Deep-hole Tools............................................................................................341 ' ]& s& J: [$ X$ K
5.1   Introduction ...........................................................................................341 ! P8 Z" R- d- D+ O2 @  h
5.2   Generic Classification of Deep-hole Machining Operations.................343 6 m8 M$ x% Z7 b4 j2 f
5.3   What Does ‘Self-piloting Tool’ Mean? .................................................345 3 y" K) N" K7 X& R. o* m
  5.3.1   Force Balance in Self-piloting Tools..........................................345 " I% i" Q* L6 {+ A
5.4   Three Basic Kinematic Schemes of Drilling .........................................350 - [- F$ a: c5 @2 V! _! O8 i
  5.4.1   Gundrill Rotates and the Workpiece is Stationary .....................351 # C  g9 ^# j/ E6 o" ]; L0 L% ]8 X- E$ t
5.4.2  Workpiece Rotates and the Gundrill is Stationary .....................352
4 k! q1 t" a) M: ~# H. C 5.4.3  Counterrotation ..........................................................................352 , Q# P$ n* H( d. u( a
5.5   System Approach ..................................................................................353
: ^/ L; T8 m/ b  o' e- e3 e$ j  5.5.1   Handling Tool Failure ................................................................353
" l2 \+ F! C- A4 ] 5.5.2  System Considerations ...............................................................354
' R6 }0 Z) M8 L# k5.6   Gundrills................................................................................................362 / F8 @& |" Q, d3 F, F
5.6.1  Basic Geometry..........................................................................362
5 g$ ~$ @& h9 O4 B1 T 5.6.2  Rake Surface ..............................................................................365 ; p) G) J6 c* X; T
  5.6.3   Geometry of Major Flanks .........................................................370 , J& J, ^8 q9 I2 Q
5.6.4  System Considerations in Gundrill Design ................................390 3 r5 x3 @8 I. p' a5 x! h
5.6.5   Examplification of Significance of the High MWF Pressure 9 H; Z6 l2 @1 w; U$ L3 @8 G- o6 F
  in the Bottom Clearance Space ..................................................423 5 x( Q0 ]( h  }. k( W, D
  5.6.6   Example of Experimental Study ................................................425
2 M+ C+ Q# {- R, [" k$ u  5.6.7   Optimization of Tool Geometry.................................................439
3 D; s' d% c, A9 B. O$ PReferences......................................................................................................440
  e8 u5 _- G: h% ?! a1 }Appendix A  
5 P& H# G& T& n. X* s4 JBasic Kinematics of Turning and Drilling.......................................................443 % R$ Y/ B) a/ {
A.1   Introduction ...........................................................................................443 4 B3 U0 {! E3 i) {2 a( ~9 K
A.2  Turning and Boring ...............................................................................444 3 @" }- y' ?( d! E3 N
  A.2.1  Basic Motions in Turning...........................................................444 0 R2 D8 G1 S2 G6 ]; R# p* g
  A.2.2  Cutting Speed in Turning and Boring ........................................448 & B# W( x% n  t
  A.2.3  Feed and Feed Rate ....................................................................448 9 f; _$ n6 W/ _6 m% v
  A.2.4  Depth of Cut...............................................................................449
/ i+ T9 E+ R7 }: X: [% h A.2.5  Material Removal Rate ..............................................................449 3 _; B7 Q4 d1 c
A.2.6  Resultant Motion........................................................................450 7 c  o7 L* ^) L8 D
A.3  Drilling and Reaming ............................................................................450
" S: Y9 b# ?/ g A.3.1  Basic Motions in Drilling...........................................................450
" ?7 D8 O0 u( [/ ~" V& J" G A.3.2  Machining Regime.....................................................................451 & }- G; F% O3 M" k0 `
A.4  Cutting Force and Power .......................................................................453
$ O+ q1 z# l5 P6 ]' _) G9 }  A.4.1  Force System in Metal Cutting...................................................453
  g6 y/ S; o4 y: b+ K/ ?4 g  A.4.2  Cutting Power ............................................................................454
: c' y8 A- y) l6 k6 s0 |, k A.4.3  Practical Assessment of the Cutting Force.................................455 8 {1 L9 l. C4 k- t, |4 R8 b. u
References......................................................................................................461
2 V% s0 n. R/ t* E) X. C* ZAppendix B  + X9 @0 [$ ?9 d1 g: D6 x1 T- v2 y
ANSI and ISO Turning Indexable Inserts and Holders.................................463 7 `( C" g' H- H
B.1   Indexable Inserts ...................................................................................463
, J3 E3 j* }) {) ]# @; F9 O, i  B.1.1  ANSI Code .................................................................................464
0 ~5 t: s8 V$ b* L( q1 B% s: p4 F B.1.2  ISO Code....................................................................................471
8 _  I% Y) D7 a* a$ m- c  B.2 Tool Holders for Indexable Inserts (Single Point Tools) ......................491
) k; [3 z  i8 ~  B.2.1   Symbol for the Method of Holding Horizontally Mounted  
1 x1 d6 L1 b- h2 ~0 ? Insert – Reference Position (1) ..............................................................492 , h; S" R8 ?! S+ |7 f$ T
  B.2.2   Symbol for Insert Shape – Reference Position (2) .....................493
/ o9 q4 `  M( V3 |, p1 ^9 n# ~  B.2.3   Symbol for Tool Style – Reference Position (3) ........................493 7 S- j! c0 V, w8 @3 r
  B.2.4   Letter Symbol Identifying Insert Normal Clearance –  - r* s6 Q0 h: w2 _
   Reference Position (4)................................................................494 / {; B; M& \7 C# [
  B.2.5   Symbol for Tool Hand – Reference position (5) ........................494
& `* i3 _3 h' a5 t: j( b& g) X  B.2.6  Symbol for Tool Height (Shank Height of Tool Holders  : Z5 h9 ~# e" n/ n& i
    and Height of Cutting Edge) - Reference Position (6) ...............494
( O% A) t+ }8 `8 b; X* h  B.2.7  Number Symbol Identifying Tool Holder Shank Width –  
" P4 X/ ~2 S0 a  C9 @7 B4 x   Reference Position (7)................................................................495 4 e4 I% `( \& r- D
  B.2.8  Number Symbol Identifying Tool Length –  
0 C; @4 p- h2 O2 X2 ]9 R' X   Reference Position (8)................................................................495
5 V7 k7 {$ ?- l& [' \- l  B.2.9   Letter Symbol Identifying Indexable Insert Size –  
3 S- Y* P1 D. p$ l9 m4 h. B, e   Reference Position (9)................................................................497 4 C4 D) z2 w! X
Appendix C  9 j2 J. T0 ^, o  w9 N9 q2 U$ l
Basics of Vector Analysis ..................................................................................499
6 b5 \: K( R, r1 D( ~C.1   Vectors and Scalars ...............................................................................499 / V, e! c% K& H$ g9 _" g9 y/ N2 B
C.2   Definition and Representation...............................................................500 / |  ^7 i0 w) r
C.2.1  Definitions..................................................................................500 : \& e5 I: j/ p' {# ^4 b9 W- w" l+ X
C.2.2  Basic Vector Operations ............................................................503
4 s, T/ E9 o- n& O# ]: kC.3   Application Conveniences.....................................................................509
  G. m& X" q* ZC.4  Rotation: Linear and Angular Velocities...............................................511 # f, Q  H2 E4 b2 J2 D8 F" o
  C.4.1   Planar Linear and Angular Velocities ........................................511 5 c  Y9 C) Z' x1 _$ Z
  C.4.2   Rotation: The Angular Velocity Vector .....................................515
- k7 W: j1 f& Z6 \" I8 cReferences ...........................................................................................................518
6 ^- p) s( t% Q/ ]Appendix D  & J2 I- y7 J5 E$ H: U6 M9 L' P* v/ A
Hydraulic Losses: Basics and Gundrill Specifics............................................519
$ o  T, m7 m2 a& @. {5 P' zD.1  Hydraulic Pressure Losses – General ....................................................519 5 I( _, B3 b+ ?- p
D.1.1  Major Losses: Friction Factor ....................................................520
2 @5 W# g# {: r  D.1.2  Minor Losses (Losses Due to Form Resistance) ........................521
5 z# H9 ^" ?; p+ v, x4 l( ^ D.2  Concept of the Critical MWF Velocity and Flow Rate .........................521 ; a6 n; [' K$ T& u! ^! I! X  g
  D.2.1  MWF Flow Rate Needed for Reliable Chip Transportation.......522 ) }4 \6 b: [. [. V9 S
  D.2.3  Example D.1...............................................................................527 ' [) K* i0 t# j! A
D.3   Inlet MWF pressure...............................................................................528
" z! r  g& \' O$ M7 M' g4 N8 uD.4  Analysis of Hydraulic Resistances ........................................................532 7 q2 G- Z1 t, j
  D.4.1  Analysis of Hydraulic Resistances Over Which the Designer  
4 M# }! X5 l" U7 [% h  y    Has No or Little Control ............................................................532
' P+ `1 ?3 j6 }- D7 `: \% F  D.4.2  Variable Resistances Over Which the Designer Has Control ....535
) A0 n6 [! ]) Y  W: FD.5   Practical Implementation in the Drill Design ........................................539 % L8 I, D# P3 a4 w; T2 g4 x
References ..........................................................................................................543
9 i5 p' Q; G1 Z7 ?Appendix E : Q; X, ~  G; q+ u' B/ _9 G
Requirements and Examples of Cutting Tool Drawings................................545
/ d9 _- T- H" Y4 G4 b+ fE.1   Introduction ...........................................................................................545 - y4 O( ~! M0 S
E.2   Tool Drawings – the Existent Practice ..................................................546 ; G: R7 E) C2 N2 O1 D
E.3   Tool Drawing Requrements ..................................................................548
8 c. |: X+ @9 G) a% _9 {0 K0 d$ iE.4   Examples of Tool Drawing ...................................................................553
7 I& j  j0 e/ I- |References ..........................................................................................................559
' }# a* p2 k, ]1 E+ r- |3 iIndex…………………………………………………………………………….561 9 z( `" A* R* @3 e8 W4 I6 o  {

/ S) B# D/ @9 H1 |: Z' c 6 `/ T$ [2 F1 z; m+ h2 W
回复 支持 反对

使用道具 举报

发表于 2011-6-25 13:07:50 | 显示全部楼层
都是些神马?
回复 支持 反对

使用道具 举报

发表于 2011-6-25 13:33:41 | 显示全部楼层
埋头挖矿中。。。。。。。。。
回复 支持 反对

使用道具 举报

发表于 2011-6-26 15:14:56 | 显示全部楼层
好东西啊。。。只是,刀具不是我的工作。。。顶起,不沉。。。
回复 支持 反对

使用道具 举报

 楼主| 发表于 2011-6-26 18:10:54 | 显示全部楼层
专业人士自有看法。
回复 支持 反对

使用道具 举报

发表于 2011-6-27 18:42:38 | 显示全部楼层
好东西啊,英文的,看着太费劲了
回复 支持 反对

使用道具 举报

发表于 2011-6-27 21:53:22 | 显示全部楼层
从网上查找这本书是Springer Series in Advanced Manufacturing丛书中的一本. F- G( E3 D! a$ g/ T! @7 g! i( ~
请问这套丛书共包含哪几本书
回复 支持 反对

使用道具 举报

您需要登录后才可以回帖 登录 | 注册会员

本版积分规则

小黑屋|手机版|Archiver|机械社区 ( 京ICP备10217105号-1,京ICP证050210号,浙公网安备33038202004372号 )

GMT+8, 2024-4-20 13:49 , Processed in 0.067422 second(s), 19 queries , Gzip On.

Powered by Discuz! X3.4 Licensed

© 2001-2017 Comsenz Inc.

快速回复 返回顶部 返回列表