1 What Does It Mean “Metal Cutting”? ...........................................................1
! d+ e! z* ], ~1.1 Introduction ...............................................................................................1 1 Y3 g" S0 [- |: z7 d8 U& X- R
1.2 Known Results and Comparison with Other Forming Processes ..............2
% w* b6 a5 M8 l; w# {8 [& {9 k 1.2.1 Single-shear Plane Model of Metal Cutting ...................................2 6 k0 x& K6 Z4 h, y9 Z; _0 g& ?
1.2.2 Metal Cutting vs. Other Closely Related Manufacturing 4 Y( R+ V& d" v. L! C. ?$ a
Operations .................................................................................................5
/ g% n; r/ N: E6 W; s( k4 h6 H1.3 What Went Wrong in the Representation of Metal Cutting?...................22 " W( a8 E: b+ c+ x, G; Z
1.3.1 Force Diagram..............................................................................23 2 o! |! k5 Z) e% `3 p
1.3.2 Resistance of the Work Material in Cutting.................................25 8 H- j g: }3 i3 T$ I% }* \
1.3.3 Comparison of the Known Solutions for the Single-shear 7 m, K0 Z1 h: v1 `0 D# P
Plane Model with Experimental Results .................................................27 - k( s w4 Y# v7 F# R( |/ W G- o) r
1.4 What is Metal Cutting?............................................................................28
) k1 l3 D2 _* b' ^$ [+ P, e 1.4.1 Importance to Know the Right Answer........................................28
& T" D! U) Q% V4 c' ]/ M! O. Z 1.4.2 Definition .....................................................................................28 5 i6 J) M4 z8 M. ~
1.4.3 Relevance to the Cutting Tool Geometry.....................................29
, W( \* O: h# K1.5 Fundamental Laws of Metal Cutting.......................................................32 " v+ C0 x# G2 [2 Q0 X, f% S+ S
1.5.1 Optimal Cutting Temperature – Makarow’s Law........................32 ! v0 ~% w& h5 i$ P
1.5.2 Deformation Law.........................................................................35
# S9 ?3 B. [7 j) o! r1 |References........................................................................................................50 * W K9 e( ]7 F$ a- \ f- k
2 Basic Definitions and Cutting Tool Geometry, , {3 m; s Y& T i
Single Point Cutting Tools ............................................................................55
2 i) s: t! |4 `* x2.1 Basic Terms and Definitions ...................................................................55
; ~) Z& d" U7 ~7 ?& R 2.1.1 Workpiece Surfaces.......................................................................57 + j0 w( u- W8 S
2.1.2 Tool Surfaces and Elements ..........................................................57
/ D7 B. _; _8 c 2.1.3 Tool and Workpiece Motions.......................................................57
( ]; I; p! F( \% j E6 S" W# y 2.1.4 Types of Cutting ............................................................................58 # h. T5 _8 N. F6 O
2.2 Cutting Tool Geometry Standards...........................................................60
5 z2 I2 B M3 J( y0 X3 U! C! z2.3 Systems of Consideration of Tool Geometry ..........................................61
8 p/ z6 s. N; Q, ^2.4. Tool-in-hand System (T-hand-S) .......................................................64, ~% H% W( P3 {, m; j. G- s
2.4.1 Tool-in-hand Coordinate System.................................................64
, ?+ `$ H# ^, i0 h/ S 2.4.2 References Planes ........................................................................66
. v$ n- Q5 B x 2.4.3 Tool Angles..................................................................................68 6 i# k' z: y! e2 t1 W
2.4.4 Geometry of Cutting Tools with Indexable Inserts ......................74
i( g4 f, w |8 \* X) }4 L8 ?2.5 Tool-in-machine System (T-mach-S)......................................................84 ' X( C5 L& o, K/ t. p' p% |
2.5.1 Angles ..........................................................................................84 ) Q% c$ ^/ O: f5 C) i7 t$ ~; I6 I
2.5.2 Example 2.3 .................................................................................88 % A f5 G; E, d/ \3 e9 g& p T, {
2.6 Tool-in-use System (T-use-S) .................................................................90 ( w. {+ r$ ]6 _0 Q1 [
2.6.1 Reference Planes ..........................................................................91 , C5 M5 O$ f: E+ _1 k: H% Z
2.6.2 The Concept .................................................................................92
. F9 R! L! b5 _. s+ Z 2.6.3 Modification of the T-hand-S Cool Geometry .............................92
/ p! w- y7 b' z' s/ v/ t$ s- i 2.6.4 Kinematic Angles.........................................................................98
; T; z" u# i) B$ ]5 S- R, w- } 2.6.5 Example 2.4 ...............................................................................100
7 E7 n6 s3 F, i' c8 |0 C& r2.7 Avalanched Representation of the Cutting Tool Geometry , ?$ D9 ^3 ~# F! k0 B
in T-hand-S............................................................................................102
2 o3 |) Z) s) a& y# V 2.7.1 Basic Tool Geometry .................................................................102
" f$ W& ~$ a: B2 W1 t/ k0 R2.7.2 Determination of Cutting Tool Angles Relation 5 {& Y, r- D) Z! \! M
for a Wiper Cutting Insert ..........................................................108
1 W3 s$ K, f, m5 ` ~# w 2.7.3 Determination of Cutting Tool Angles * U+ y7 U# S3 b, A
for a Single-point Tool ...............................................................110
4 M* a9 I* X2 b' [# {/ f9 g, \" ?6 M 2.7.4 Flank Angles of a Dovetail Forming Tool .................................117
$ l( j( c& q+ W/ o6 K4 s' c 2.7.5 Summation of Several Motions..................................................119 % n) T( l, K$ v( c- {8 e( Z& E1 d# C
References......................................................................................................125 ' a7 d4 D1 ]3 [2 s8 u- Z) }/ y
3 Fundamentals of the Selection of Cutting Tool Geometry Parameters...127 # \; T$ U* F% H5 A
3.1 Introduction ...........................................................................................127 0 u$ q- B) Z" P2 O# u; e
3.2 General Considerations in the Selection of Parameters
9 J D0 G' J6 p; v+ O: X# E of Cutting Tool Geometry .....................................................................129 0 w- J& S* v" }1 v7 ~
3.2.1 Known Results .............................................................................129
/ a' V& ]. p- {% q6 X1 O 3.2.2 Ideal Tool Geometry and Constrains............................................130
9 X( L* L3 v5 ~% e) O% F 3.2.3 Practical Gage for Experimental Evaluation of Tool Geometry...132
& E( U& _/ O) P: s% n' X. L3.3 Tool Cutting Edge Angles .....................................................................132 , I3 w1 g9 u' l" A- R' @5 y
3.3.1 General Consideration................................................................132
" m9 U. W( D. m p 3.3.2 Uncut ChipT in Non-free Cutting ..............................................134
7 a0 H$ ?) ?% V1 n4 l0 u* {( l( G 3.3.3 Influence on the Surface Finish..................................................142
" s1 ^3 v$ v8 ]3 @ 3.3.4 Tools with κr > 90°.....................................................................144
7 e5 H" t" A; x1 ]4 v& s 3.3.5 Tool Minor Cutting Edge Angle ................................................147
, K7 ~! e# Z1 l2 b( S- W6 Z3.4. Edge Preparation ...................................................................................161 / N/ k' _2 a9 a
3.4.1 General .......................................................................................161
) d1 c' O% k% A1 z9 C3 U% ^5 Q/ L 3.4.2 Shape and Extent........................................................................163
; _ f* x# W1 G5 g 3.4.3 Limitations .................................................................................163
7 @2 T1 O8 S7 `% ~( J 3.4.4 What Edge Preparation Actually Does.......................................169 ! ~2 j! i# L5 h! W. K& @
3.5 Rake Angle............................................................................................171
6 q5 a( W3 Y) B7 a: A" h& f# X/ z 3.5.1 Introduction................................................................................171 , E$ l: r$ o" p, V8 K
3.5.2 Influence on Plastic Deformation and Generazliations ..............175 % A6 K* I% a- m X
3.5.3 Effective Rake Angle .................................................................183 ) X+ D5 _. _- J. I. o, J. Z
3.5.4 Conditions for Using High Rake Angles....................................189 5 K e" Z" I) ^' O
3.6 Flank Angle ...........................................................................................191
1 Z0 W% x8 g& }/ q% y9 B3.7 Inclination Angle...................................................................................193
2 R3 P. i; o3 D1 D5 o) B 3.7.1 Turning with Rotary Tools.........................................................195
# }" G1 ^5 y( W* L K9 Q 3.7.2 Helical Treading Taps and Broaches..........................................197
$ ~3 \* k) F9 a2 z" c: Q 3.7.3 Milling Tools..............................................................................198 t. L# ]! [& |* \6 Q9 I, a
References......................................................................................................201 * x' u8 H' @& i$ u) ~# m
4 Straight Flute and Twist Drills ...................................................................205
; n4 i. g; J% ^5 M% Z8 P4.1 Introduction ...........................................................................................205
4 E6 r# C3 z3 N) d% N! c& [4.2 Classification.........................................................................................206
3 [' r0 R) f3 Q5 ]- b9 l4.3 Basic Terms...........................................................................................208 ' `# N3 ]' \1 G5 c! Z' }4 X
4.4 System Approach ..................................................................................211
6 J: k7 T$ y! E, } 4.4.1 System Objective .......................................................................212 1 x3 K4 ~) l3 @1 _9 f3 f8 G
4.4.2 Understanding the Drilling System............................................212 6 c+ h5 v+ ~2 H
4.4.3. Understanding the Tool..............................................................212
& s; P# @: r F( ~9 e4.5. Force System Constrains on the Drill Penetration Rate ........................213 . i; i! |3 Q2 u& R8 n# v
4.5.1 Force-balance Problem in Conventional Drills ..........................213
! [( _ ~6 @* s! T5 i" d+ v, h% x! X 4.5.2 Constrains on the Drill Penetration Rate....................................218 1 @; P: V5 {# r( Z6 n2 Z, o$ L# [) ~
4.5.3 Drilling Torque ..........................................................................219 K9 K- E H: s& Q: C' t& p
4.5.4 Axial Force.................................................................................220
& O, X9 i! `3 m 4.5.5 Axial Force (Thrust)-torque Coupling .......................................221
/ j' y8 s9 @' i1 z4.6 Drill Point ..............................................................................................223
% d! k/ Y! ] E 4.6.1 Basic Classifications ..................................................................223
" T( f2 _% C* t5 P; g 4.6.2 Tool Geometry Measures to Increase the Allowable 1 Q! T9 a- h5 l
Penetration Rate ....................................................................................224 % {# n* @' \& p/ Z: I5 w, M8 O
4.7 Common Design and Manufacturing Flaws..........................................259 2 x% [5 m: q2 c) D) v, D2 ~) l: f
4.7.1 Web Eccentricity/ Lip Index Error.............................................260 2 {, g0 i" W* R* c
4.7.2 Poor Surface Finish and Improper Tool Material/Hardness.......261 1 k& B% b( T: l
4.7.3 Coolant Hole Location and Size.................................................263
- @0 g& Q# J8 L. x2 g6 R0 W* P4.8 Tool Geometry ......................................................................................267
+ R( \' y3 b) a 4.8.1 Straight-flute and Twist Drills Particularities............................269 6 N; M% j% H1 H+ L3 v4 w
4.8.2 Geometry of the Typical Drill Point ..........................................270 . S7 e- B( r5 W
4.8.3 Rake Angle.................................................................................272 6 p& {2 I$ k2 y$ w5 g S9 T1 c
4.8.4 Inclination Angle .........................................................................280
\3 b( J" @) a6 T; N# {7 f 4.8.5 Flank Angle................................................................................281 : ?: v I: W: u9 T9 k! |6 x
4.8.6 Geometry of a Cutting Edge Located at an Angle ) K7 n# X; e, ~: |( l0 u; [: e$ |, J
to the y0-plane ............................................................................292
7 P7 u0 o4 I2 M( l% b 4.8.7 Chisel Edge ................................................................................295 $ q# @8 B' s* p7 U) X# y5 k
4.8.8 Drill Flank is Formed by Two Planes: Generalization...............306 % X3 V: x& I p; E+ j
4.8.9 Drill Flank Angle Formed by Three Planes ...............................310
6 Q: Q; X1 g2 T( ]" a* y1 ^3 Z 4.8.10 Flank Formed by Quadratic Surfaces.........................................313 # G& A- G+ \" y) V% \" T% ?% N
4.9 Load Over the Drill Cutting Edge .........................................................324 & P* O8 I- n& z6 G6 }$ a1 |% f* Q; P
4.9.1 Uncut Chip Thickness in Drilling ..............................................325 4 K) c3 j u* K! ~$ ^( Y1 Y2 S% e+ C& R
4.9.2 Load Distribution Over the Cutting Edge ..................................327 . ^ b: N M% C4 e! @
4.10 Drills with Curved and Segmented Cutting Edges ................................328 + w: }, d, f, B& c3 h
4.10.1 Load of the Cutting Part of a Drill with Curved Cutting Edges .329 % {3 M% y& X) P1 K5 s- U8 r% |9 K* n
4.10.2 Rake Angle.................................................................................332
, D V9 D" G8 ]4 b0 Q+ GReferences......................................................................................................337
/ X+ d. v6 c. D% n; C5 Deep-hole Tools............................................................................................341
2 ], Q3 \3 \* m3 b- S6 y+ H5.1 Introduction ...........................................................................................341 : @: z9 u' E; y9 I. w1 W
5.2 Generic Classification of Deep-hole Machining Operations.................343 # t" b' g! D* M5 ?9 D- u
5.3 What Does ‘Self-piloting Tool’ Mean? .................................................345
- J( \+ {* ^$ u) V 5.3.1 Force Balance in Self-piloting Tools..........................................345 # P: L6 f* M/ q! i- h0 p: z
5.4 Three Basic Kinematic Schemes of Drilling .........................................350 % ?) V H8 d' i& A
5.4.1 Gundrill Rotates and the Workpiece is Stationary .....................351
9 j, |4 Z- L% u9 g+ z1 g; d# ^ 5.4.2 Workpiece Rotates and the Gundrill is Stationary .....................352 , U" m: \1 ^: b' E; K4 h
5.4.3 Counterrotation ..........................................................................352 , U7 F8 U: q+ u, Y* \( n: q
5.5 System Approach ..................................................................................353 ( r- k' R+ X( N7 e6 a
5.5.1 Handling Tool Failure ................................................................353 : w! Y+ j u. K. b* K( M' D, v: r- d
5.5.2 System Considerations ...............................................................354
) T; Q0 g) f) Z0 Z) N3 c& a) \5.6 Gundrills................................................................................................362 ' Y6 Q" Q% h2 J. E+ B9 i8 v* x7 S
5.6.1 Basic Geometry..........................................................................362
1 f$ c) }( N" p, u 5.6.2 Rake Surface ..............................................................................365
@: j p1 J3 C3 }7 g 5.6.3 Geometry of Major Flanks .........................................................370 J1 _4 R" L$ w( z/ I5 N
5.6.4 System Considerations in Gundrill Design ................................390
0 u# i {7 @6 s8 H2 E' o5.6.5 Examplification of Significance of the High MWF Pressure ; s7 A$ ~3 a! T
in the Bottom Clearance Space ..................................................423
& Q9 k% O/ f# d% G2 e# Z5 ?8 F9 P 5.6.6 Example of Experimental Study ................................................425 8 _* @7 k3 a" j5 Q/ t
5.6.7 Optimization of Tool Geometry.................................................439
! a( b) f8 A+ W4 H9 H& zReferences......................................................................................................440
; G$ w0 Z- f4 ?% G4 o! _' q4 nAppendix A
+ q: r; _& A, s$ y8 bBasic Kinematics of Turning and Drilling.......................................................443
4 T/ R+ k: F. Q" t$ J; B' w7 Y b- VA.1 Introduction ...........................................................................................443
. n" b; A" R0 x" Y3 x+ s% BA.2 Turning and Boring ...............................................................................444 4 r4 G; ^+ m! N
A.2.1 Basic Motions in Turning...........................................................444 j% f7 U5 j+ }4 u$ t' J$ b7 H
A.2.2 Cutting Speed in Turning and Boring ........................................448 3 u1 ]0 X$ G2 p: t
A.2.3 Feed and Feed Rate ....................................................................448 ) r( ~- x9 Y* R) v6 k
A.2.4 Depth of Cut...............................................................................449 ; A) ~! X. m4 F
A.2.5 Material Removal Rate ..............................................................449
z, a2 Z) p5 I- s4 z2 k A.2.6 Resultant Motion........................................................................450 ) r+ S: l2 r5 A/ M' r
A.3 Drilling and Reaming ............................................................................450
6 J2 A: ^' h% t A.3.1 Basic Motions in Drilling...........................................................450
2 t! q( [6 O, d* ~/ A3 J L A.3.2 Machining Regime.....................................................................451 Q9 e3 D5 S8 \' @: f1 w2 U
A.4 Cutting Force and Power .......................................................................453 / a: Q6 t" X/ b6 V% |2 ?- E2 z
A.4.1 Force System in Metal Cutting...................................................453 $ M# ~1 L% |3 ]9 S# A" H
A.4.2 Cutting Power ............................................................................454
" Q8 Z# a3 \# I' j* M A.4.3 Practical Assessment of the Cutting Force.................................455 & x' A" A( O$ e0 H9 l
References......................................................................................................461
7 A/ d4 U- L% fAppendix B ]# l R3 |2 A( X
ANSI and ISO Turning Indexable Inserts and Holders.................................463
0 r! I7 Q; [9 b4 z3 IB.1 Indexable Inserts ...................................................................................463
6 J5 R8 y" |8 F/ n, _! T B.1.1 ANSI Code .................................................................................464
e6 ^: U0 E1 ]% G0 _ B.1.2 ISO Code....................................................................................471
; h! m& w2 f5 P5 F# y6 H, X- b B.2 Tool Holders for Indexable Inserts (Single Point Tools) ......................491
" D3 l9 A! ^, o8 E B.2.1 Symbol for the Method of Holding Horizontally Mounted ! D$ v" T0 b! t8 u: I
Insert – Reference Position (1) ..............................................................492 8 X/ e' L; i! n0 n
B.2.2 Symbol for Insert Shape – Reference Position (2) .....................493
6 I* h Q$ G+ k2 Z( a" k( U; Y* ] B.2.3 Symbol for Tool Style – Reference Position (3) ........................493
+ y/ d i6 v( U- Q J) j B.2.4 Letter Symbol Identifying Insert Normal Clearance –
: |/ ~6 s' r+ E8 E3 ` Reference Position (4)................................................................494
. d6 }, C7 k6 `1 F$ n! i9 W B.2.5 Symbol for Tool Hand – Reference position (5) ........................494 ) S# y) d4 a, p3 V
B.2.6 Symbol for Tool Height (Shank Height of Tool Holders
1 I7 v( H7 x. y. S# c and Height of Cutting Edge) - Reference Position (6) ...............494 - `7 F0 I% @+ A6 k7 x
B.2.7 Number Symbol Identifying Tool Holder Shank Width –
( o; u6 A; D4 p1 b Reference Position (7)................................................................495
8 [7 q: }9 r/ D; z7 H& v0 p; t8 Z B.2.8 Number Symbol Identifying Tool Length –
" }4 H& i/ n3 |1 C3 ], {5 V Reference Position (8)................................................................495
6 L! x: o$ j; ~5 a5 i7 L B.2.9 Letter Symbol Identifying Indexable Insert Size – : g; Z* D0 k" v/ e
Reference Position (9)................................................................497 4 g3 M' L5 s% u8 H, q4 _3 k
Appendix C
# E/ k, [# a4 X6 l/ |3 NBasics of Vector Analysis ..................................................................................499
0 v* K p8 f: P4 F6 z+ _C.1 Vectors and Scalars ...............................................................................499
' b6 B0 G* K( C8 l5 ], r- RC.2 Definition and Representation...............................................................500 6 V1 ^5 d& @/ O& A( _
C.2.1 Definitions..................................................................................500
0 u! z: y% e. _- p8 U q6 q: L C.2.2 Basic Vector Operations ............................................................503 U1 C- [% b7 q$ b3 O/ ^ z; e
C.3 Application Conveniences.....................................................................509 3 ^2 [( X# l2 @9 _$ C$ m' ~" r# l
C.4 Rotation: Linear and Angular Velocities...............................................511 ) ^: W$ \$ e) g q
C.4.1 Planar Linear and Angular Velocities ........................................511
6 \/ Z" g9 F+ _: \5 r2 ]# ~ C.4.2 Rotation: The Angular Velocity Vector .....................................515 . ?* w1 m0 T8 [: l: F( N2 d3 ]
References ...........................................................................................................518
4 \; j3 f3 Q( y6 UAppendix D
$ ?4 h# p) d+ R3 Z2 y: xHydraulic Losses: Basics and Gundrill Specifics............................................519
7 y& |0 Z5 _3 ^D.1 Hydraulic Pressure Losses – General ....................................................519
7 W! i8 j8 W( i7 s7 O& g D.1.1 Major Losses: Friction Factor ....................................................520 1 I+ X0 [6 s2 R7 ]: d
D.1.2 Minor Losses (Losses Due to Form Resistance) ........................521
/ B+ n: ^- v) U# V" ` D.2 Concept of the Critical MWF Velocity and Flow Rate .........................521
/ _" G% w8 F l! Y0 H1 R0 l D.2.1 MWF Flow Rate Needed for Reliable Chip Transportation.......522 & _( U8 }& g: C0 }; g9 W9 P
D.2.3 Example D.1...............................................................................527 3 C. C4 [$ w& U9 }4 s
D.3 Inlet MWF pressure...............................................................................528
( O/ G: |! ]- \2 Y" M! _: [5 JD.4 Analysis of Hydraulic Resistances ........................................................532 4 Z, p) j) ?! l0 Z# N
D.4.1 Analysis of Hydraulic Resistances Over Which the Designer
7 f/ _5 b% o) S0 `; L5 |) S Has No or Little Control ............................................................532
/ |$ O" Y8 g- Q' L D.4.2 Variable Resistances Over Which the Designer Has Control ....535
, G, N' ]7 U2 C! o" j. C. QD.5 Practical Implementation in the Drill Design ........................................539 2 [$ S. B- ~' I- L, l
References ..........................................................................................................543 + B) W' Y/ r8 y# n
Appendix E
* O8 y8 V6 Y6 } XRequirements and Examples of Cutting Tool Drawings................................545 3 j" e; g: X/ b( x
E.1 Introduction ...........................................................................................545 4 c1 v- F7 a. e/ K2 K
E.2 Tool Drawings – the Existent Practice ..................................................546
% S @6 l2 Y. R7 Z# e0 W! U4 j: OE.3 Tool Drawing Requrements ..................................................................548 ( _- ]8 {7 u% M8 T0 a
E.4 Examples of Tool Drawing ...................................................................553 2 e+ |+ J% _$ }6 Y3 o
References ..........................................................................................................559
% W- E S$ h, ]; o( l$ w# iIndex…………………………………………………………………………….561
# l. O% p ?$ E! w: t! H U/ G4 P; v% U6 l' y
- h1 }1 G' i7 ^8 c* e8 T |