找回密码
 注册会员

QQ登录

只需一步,快速开始

搜索
查看: 8473|回复: 19

Geometry_of_Single_point_Turning_Tools_and_Drills

[复制链接]
发表于 2011-6-23 22:58:22 | 显示全部楼层 |阅读模式
本帖最后由 机器鼠 于 2011-6-23 23:18 编辑 ! U5 ?* F. C0 ?" _

& x% x3 N% n$ R. PGeometry_of_Single_point_Turning_Tools_and_Drills__Fundamentals_and_Practical_Applications.pdf
# V" w0 Y6 r. D; |$ X/ q6 e有要的吗?刀具,细节,很到位。英文版。3 n9 N6 R1 M+ h+ v
国内无人这么细研究的吧?

Geometry_of_Single_point_Turning_Tools_and_Drills__Fundamentals_and_Practical_Ap.rar

4.35 MB, 阅读权限: 90, 下载次数: 8, 下载积分: 威望 -10 点

7

Geometry_of_Single_point_Turning_Tools_and_Drills__Fundamentals_and_Practical_Ap.rar

4.35 MB, 下载次数: 7, 下载积分: 威望 -10 点

6

Geometry_of_Single_point_Turning_Tools_and_Drills__Fundamentals_and_Practical_Ap.rar

4.35 MB, 下载次数: 8, 下载积分: 威望 -10 点

5

Geometry_of_Single_point_Turning_Tools_and_Drills__Fundamentals_and_Practical_Ap.rar

4.35 MB, 下载次数: 6, 下载积分: 威望 -10 点

4

Geometry_of_Single_point_Turning_Tools_and_Drills__Fundamentals_and_Practical_Ap.rar

4.35 MB, 下载次数: 6, 下载积分: 威望 -10 点

3

Geometry_of_Single_point_Turning_Tools_and_Drills__Fundamentals_and_Practical_Ap.rar

4.35 MB, 下载次数: 6, 下载积分: 威望 -10 点

2

Geometry_of_Single_point_Turning_Tools_and_Drills__Fundamentals_and_Practical_Ap.rar

140.75 KB, 阅读权限: 90, 下载次数: 7, 下载积分: 威望 -10 点

1

回复

使用道具 举报

发表于 2011-6-24 19:17:16 | 显示全部楼层
说什么的?
 楼主| 发表于 2011-6-24 22:02:25 | 显示全部楼层
Although almost any book and/or text on metal cutting, cutting tool design, and
$ F% X5 k0 o6 e% w5 D4 \' \+ umanufacturing process discusses to a certain extent the tool geometry, the body of 9 w- u9 T$ g9 f5 [
knowledge on the subject is scattered and  confusing. Moreover, there is no clear $ `  L. `) S0 b) M7 M
objective(s) set in the selection of the tool geometry parameters so that an answer # s5 |! p0 m) W) ^! {* w; U; Z
to a simple question about optimal tool geometry cannot be found in the literature
5 ^* T4 l! e* U# W( {+ u( E2 |on the subject. This is because a criterion (criteria) of optimization is not clear, on
% }% u! F9 d7 ~7 k0 `one hand, and because the role of cutting tool geometry in machining process 1 l! c7 p* N4 V# E
optimization has never been studied systematically, on the other. As a result, many   w& t) E6 r  e6 u
practical tool/process designers are forced to use extremely vague ranges of tool 9 m  o; h. t2 ^* Z6 T; O% c% y
geometry parameters provided by handbooks. Being at least 20+ years outdated, 0 v( r0 a: r( ]8 Z! o% _9 o
these data do not account for any particularities of a machining operation including 5 w0 ^& {) T, b, P0 a+ w
a particular grade of tool material, the condition of the machine used, the cutting 9 s4 ]6 @' d+ o7 n/ V
fluid, properties and metallurgical condition of the work material, requirements to
/ s, d+ V; t$ l, V2 s1 Gthe integrity of the machined surface, etc.
, y+ P2 z& ^' ^7 bUnfortunately, while today's professionals, practitioners, and students are 9 J8 O; N4 h( r1 i0 G' m
interested in cutting tool geometry, they are doomed to struggle with the confusing
9 Z, l3 u& O  I7 vterminology. When one does not know what the words (terms) mean, it is easy to ! x7 ?0 ^: ~, h8 W2 S8 q5 t
slip into thinking that the matter is difficult, when actually the ideas are simple, 4 c! W7 U  d# p, `* t3 V
easy to grasp, and fun to consider. It is the terms that get in the way, that stand as a
. A5 b7 D* Y  D* s/ i7 Nwall between many practitioners and science. This books attempts to turn those . s7 d, u$ Q, u' ?
walls into windows, so that readers can peer in and join in the fun of proper tool 1 r6 \' q) u: f# _' i& K( _% P
design. # I; s7 A  L- ^8 m4 m% K
So, why am I writing this book? There are a few reasons, but first and foremost, - J# {! R7 q  l  M- S- v
because I am a true believer in what we call technical literacy. I believe that
) V7 W" v, u9 Y2 }everyone involved in the metal cutting business should understand the essence and
$ r& C( @4 `$ V. v4 @  b4 dimportance of cutting tool geometry. In my opinion, this understanding is key to
, k' G$ v: `  eimproving efficiency of practically all machining operations. For the first time, this
' z, A1 K$ `! |6 _6 M) cbook presents and explains the direct correlations between tool geometry and tool ( N1 N2 A7 t) x" R$ W2 R% b7 i" Q
performance. The second reason is that I felt that there is no comprehensive book
0 S$ ~* B6 Z( ?5 k$ `- Eon the subject so professionals, practitioners, and students do not have a text from
; H* W7 c& @! Swhich to learn more on the subject and thus appreciate the real value of tool
) @2 j3 f, e6 p0 P! i9 Sgeometry. Finally, I wanted to share the key elements of tool geometry that I felt + y, s" K: J% o; v
were not broadly understood and thus used in the tool design practice and in
6 Z! O, t+ O: K$ S) ~7 P( @optimization of machining operations in industry. Moreover, being directly . i6 Z% c" R$ b; E8 l; g- o0 N
involved in the launch of many modern manufacturing facilities equipped with $ S" E; a  P  q
state-of-the-art high-precision machines, I found that the cutting tool industry is not ; f( J" l2 ^+ x5 R, h6 ]
ready to meet the challenge of modern metal cutting applications. One of the key , p- V1 ^& U( O, V6 p+ j1 A
issues is the definite lack of understanding of the basics of tool geometry of , S6 J; ?4 K% T+ y! [
standard and application-specific tools.
. h: X- T! ^1 NThe lack of information on cutting tool geometry and its influence on the
$ S3 J( }: D8 ^7 {) m: J  x3 T2 Uoutcome of machining operations can be explained as follows. Many great findings
0 t1 ~3 a* B/ o/ ~2 ~. P* G3 gon tool geometry were published a long time ago when neither CNC grinding
; V' F- t) G) O1 a6 Q0 T" smachines capable of reproducing any kind of tool geometry were available nor
% o, w6 r+ y) c: Z$ G1 d2 y) Nwere computers to calculate parameters of such geometry (using numerical
! B# `9 t/ C0 U% u# ^7 w( V0 omethods) common. Manual grinding using standard 2- and 3-axis simple grinding
# r0 J4 R. I/ Z8 e9 d* Efeatures was common so the major requirement for tool geometry was the simpler 9 p4 b4 n- N+ u  S' U# T
the better. Moreover, old, insufficiently rigid machines, aged tool holders and part
6 c$ m( F. f% u+ ffixtures, and poor metal working fluid (MWF) selection and maintenance levered ( a1 C. D) ^0 t, }5 Y
any advancement in tool geometry as its influence could not be distinguished under ! J7 |# i6 c5 i$ c/ W
these conditions. Besides, a great scatter in the properties of tool materials in the
3 ]; Q& h, f) d- H) j% B+ Wpast did not allow distinguishing of the true influence of tool geometry. As a result, 8 R5 I- [/ k. y. S# W6 N
studies on tool geometry were reduced to  theoretical considerations of features of . V; E4 `. q9 ^5 U& i# X
twist drills and some gear manufacturing  tools such as hobs, shaving cutters,
1 A, ^  y! Z0 @( {! R  j3 ushapers, etc.  
- F( r& U' J9 wGradually, once mighty chapters on tool geometry in metal cutting and tool ) Q% u9 }/ u4 |" f
design books were reduced to sections of few pages where no correlation between ) [2 w" K4 t) _5 {( x9 c4 S
tool geometry and tool performance is normally considered. What is left is a ( N6 d9 ]$ q7 H% z* e( D0 |
general perception that the so-called “positive geometry” is somehow better than
$ r, ]' C6 R; O& b- Z9 Z) ]3 n“negative geometry.” As such, there is no quantitative translation of the word # e+ b  ^/ o( X, U
“better” into the language  of technical data although a great number of articles / o& N; s. r" m7 K5 ^$ _
written in many professional magazines discuss the qualitative advantages of
7 y" d; l: [* M9 X4 v# F“positive geometry.” For example, one popular manufacturing magazine article
( [9 D. Q# T) t& _% Iread “Negative rake tools have a much  stronger leading edge and tend to push
9 Y7 _; V+ l' d( _4 Fagainst the workpiece in the direction of the cutter feed. This geometry is less free ) p8 Q8 |' r5 a! b8 f
cutting than positive rakes and so consumes more horsepower to cut.” Reading ; B. X9 x- V6 U/ {) v) z# p. F  k
these articles one may wonder why cutting tool manufacturers did not switch their
# r4 J3 K. p! X. _tool designs completely to this mysterious “positive geometry” or why some of 9 _+ t( A2 g# \4 x; M* Y
them still investigate and promote negative geometry.
7 J5 J' j! r6 }3 U5 t3 _% nDuring recent decades, the metalworking industry underwent several important
/ U- S: t& P; [changes that should bring cutting tool geometry into the forefront of tool design
& j% Y  l8 D) x' ]: mand implementation:
 楼主| 发表于 2011-6-24 22:03:42 | 显示全部楼层
1   What Does It Mean “Metal Cutting”? ...........................................................1 9 X" @% N% i% S
1.1   Introduction ...............................................................................................1 " u8 @' X: S" J( I" [
1.2   Known Results and Comparison with Other Forming Processes ..............2
! ~& E, u2 G# M$ t% K# }  1.2.1   Single-shear Plane Model of Metal Cutting ...................................2
# X7 |& t9 {" [1 Z, v! d  1.2.2   Metal Cutting vs. Other Closely Related Manufacturing  ( R6 D7 z' B& \) V2 D3 v
Operations .................................................................................................5 + K, ~8 n4 R3 f  X
1.3   What Went Wrong in the Representation of Metal Cutting?...................22 & q4 P1 O9 y2 c3 {1 M" i2 t
  1.3.1   Force Diagram..............................................................................23 & s- q8 y" k, O/ ^5 J7 K2 V
  1.3.2   Resistance of the Work Material in Cutting.................................25
+ Y4 l5 p  f9 \. D9 N& `% V1 A  I  1.3.3   Comparison of the Known Solutions for the Single-shear  - Q  j) U/ X$ @0 p. ]
  Plane Model with Experimental Results .................................................27
6 k, ]% ]# z0 d; g0 J* Z1.4   What is Metal Cutting?............................................................................28
* ~  p6 b- g) |' D) B, ^  1.4.1   Importance to Know the Right Answer........................................28 ( o( p; R& K$ H+ \  ^# H3 ?
1.4.2  Definition .....................................................................................28
% m$ z' \4 ?6 v- a  1.4.3   Relevance to the Cutting Tool Geometry.....................................29
, g  q% V& D( T- {! G1.5   Fundamental Laws of Metal Cutting.......................................................32 : }8 S7 I5 ]' W, n: F
  1.5.1   Optimal Cutting Temperature – Makarow’s Law........................32 & c! V9 R; t: g: A3 ^
1.5.2  Deformation Law.........................................................................35
" d; i( h) x3 n! U4 D. tReferences........................................................................................................50
4 T) [" _& F7 C4 N 2   Basic Definitions and Cutting Tool Geometry,  : S' P+ I! a6 R' P
Single Point Cutting Tools ............................................................................55
- O) Y' S6 C0 M% j: \8 z2.1   Basic Terms and Definitions ...................................................................55
/ ]: e+ y  j9 f- u2 p 2.1.1  Workpiece Surfaces.......................................................................57 / L& _1 I" c  X; o+ I0 E/ G3 {
2.1.2  Tool Surfaces and Elements ..........................................................57
* Q! N# L$ I. p4 L4 a6 g$ r 2.1.3  Tool and Workpiece Motions.......................................................57 , B* u+ f7 e" Q6 q& g) b
2.1.4  Types of Cutting ............................................................................58 1 }% ~3 ?/ R$ u" c% H/ B
2.2   Cutting Tool Geometry Standards...........................................................60 # r9 [$ `5 g% O+ T
2.3   Systems of Consideration of Tool Geometry ..........................................61 & n( O* Z. @5 @+ M4 e
2.4.  Tool-in-hand System (T-hand-S) .......................................................642 J# Z) v% a  b) w+ J+ t1 ^
  2.4.1   Tool-in-hand Coordinate System.................................................64
' v, @$ `( ^5 z# ^: @ 2.4.2  References Planes ........................................................................66 8 h8 r. @* {6 h- p% v- J
2.4.3  Tool Angles..................................................................................68
# m6 n! P. C. F8 U  2.4.4   Geometry of Cutting Tools with Indexable Inserts ......................74 5 z( ~0 ?* N; H0 n7 {' W
2.5   Tool-in-machine System (T-mach-S)......................................................84 . N" X2 M, C) t" s; l
2.5.1  Angles ..........................................................................................84 " J% h$ H! d) a1 p' ~
  2.5.2   Example 2.3 .................................................................................88
3 W8 i. ]0 v) \" \6 x$ F2.6   Tool-in-use System (T-use-S) .................................................................90 - p" t/ {3 I  ?. l7 t6 |: E) P
2.6.1  Reference Planes ..........................................................................91
" P- w9 D9 D" j2 l 2.6.2  The Concept .................................................................................92
7 B% _% n* N& _4 k$ h$ k  2.6.3   Modification of the T-hand-S Cool Geometry .............................92 ( H$ k* i: k4 u; ~( S( C' ]/ D
  2.6.4   Kinematic Angles.........................................................................98 - ^% E  w; l3 a9 ~
  2.6.5   Example 2.4 ...............................................................................100
( }* [& }# a8 [* w" A5 Y2.7   Avalanched Representation of the Cutting Tool Geometry  
8 w9 T7 f5 D3 N- i! b: @ in T-hand-S............................................................................................102
/ L9 r; q  F7 ~  r* O! B, m" @ 2.7.1  Basic Tool Geometry .................................................................102
5 T  L/ F3 E2 p8 D4 q: w2.7.2   Determination of Cutting Tool Angles Relation
7 i, [0 t! T9 i8 h% }$ _  for a Wiper Cutting Insert ..........................................................108 ; r6 D, `) ~4 H9 \* F1 z8 U7 Z
  2.7.3   Determination of Cutting Tool Angles  
6 D2 ^- q3 n: r/ D/ V2 @   for a Single-point Tool ...............................................................110
9 X9 n7 Z. i& r  2.7.4   Flank Angles of a Dovetail Forming Tool .................................117 # [1 j1 @8 c: e$ y( |
  2.7.5   Summation of Several Motions..................................................119 ) @1 _8 p! h/ E: f! W
References......................................................................................................125 ; e# m' m8 ~  |7 z. s, x
3  Fundamentals of the Selection of Cutting Tool Geometry Parameters...127 $ r6 Y% J% N0 R. s7 T' r$ f# b6 m
3.1   Introduction ...........................................................................................127 ' n! C/ v; B$ V, w9 y
3.2   General Considerations in the Selection of Parameters  
6 `2 S, H7 V2 U& u) ?; ^  of Cutting Tool Geometry .....................................................................129 . v8 c5 Y: x" M7 B- R. [' r
3.2.1 Known Results .............................................................................129
+ a8 m  |7 r# [8 ]# t' ?2 ^+ O; f  3.2.2 Ideal Tool Geometry and Constrains............................................130
$ X3 U1 W  s3 x- ]# _  3.2.3 Practical Gage for Experimental Evaluation of Tool Geometry...132 4 d4 i; {+ d6 \! i
3.3   Tool Cutting Edge Angles .....................................................................132
2 c( p" m( q9 B+ A 3.3.1  General Consideration................................................................132 ! I; n  F2 {) |! D( \7 s9 Y' z
  3.3.2   Uncut ChipT in Non-free Cutting ..............................................134
' }! X' `2 C% C( a  W  3.3.3   Influence on the Surface Finish..................................................142
4 l( _+ y4 w- ]: @$ }+ B8 M1 E 3.3.4  Tools with κr > 90°.....................................................................144
' f* ?9 Y2 k; @* f; ]" Z, l  3.3.5   Tool Minor Cutting Edge Angle ................................................147
" R) R7 M. i* `* L  i( I5 m3.4.  Edge Preparation ...................................................................................161
) V. X2 ^' V3 c! @ 3.4.1  General .......................................................................................161 # ^$ {4 }; H; B! i4 G% N
  3.4.2   Shape and Extent........................................................................163 % a- P9 q# O/ p4 c" R2 G) S/ J3 {
3.4.3  Limitations .................................................................................163 8 H' R: F7 Y" ~$ X& H
  3.4.4   What Edge Preparation Actually Does.......................................169
" _& ~1 N% I% g, @" j3.5   Rake Angle............................................................................................171
, b* b. f7 @- f# A 3.5.1  Introduction................................................................................171
8 T" [: c' o# f: P' T. C& [  3.5.2   Influence on Plastic Deformation and Generazliations ..............175 / j9 y/ V* _5 i& f
  3.5.3   Effective Rake Angle .................................................................183 7 k/ b2 D3 |; g6 ^. X/ u
  3.5.4   Conditions for Using High Rake Angles....................................189
8 r4 |1 }3 r" G# U: g9 i5 e3.6   Flank Angle ...........................................................................................191 / ?2 w% R4 ]9 k* k
3.7   Inclination Angle...................................................................................193 " N% I4 a/ D/ k) W* C% S; z
      3.7.1   Turning with Rotary Tools.........................................................195 + i6 B- n( M5 T# B; g  k5 y' T
3.7.2  Helical Treading Taps and Broaches..........................................197
0 @% Q) U# O$ ?3 e& d 3.7.3  Milling Tools..............................................................................198 % e) X5 k0 p2 X5 v& X
References......................................................................................................201
1 h) I7 V/ }% R/ D9 c" v4   Straight Flute and Twist Drills ...................................................................205 ( z6 Z. k  |$ X! N/ p
4.1   Introduction ...........................................................................................205 - M6 N* G3 Z& `; k  D7 O$ N1 W
4.2   Classification.........................................................................................206 ( w, ^, M+ G: c
4.3   Basic Terms...........................................................................................208 / x- n* K2 ?& U/ v8 R3 Y( A
4.4   System Approach ..................................................................................211
- Q1 z, S7 Z# o# f 4.4.1  System Objective .......................................................................212 3 `4 C8 X1 b6 r  V
4.4.2  Understanding the Drilling System............................................212 % s5 }, h/ C& c& z1 c
  4.4.3.  Understanding the Tool..............................................................212
0 n8 q& J; D& W6 S: t( Q/ c% t& v4.5.  Force System Constrains on the Drill Penetration Rate ........................213
% T! Y4 @; c7 C; y  4.5.1   Force-balance Problem in Conventional Drills ..........................213 ) E$ Y: [4 p' a, e2 @
  4.5.2   Constrains on the Drill Penetration Rate....................................218 7 J6 V. w6 P* J& `
4.5.3  Drilling Torque ..........................................................................219
1 u9 v# ]$ X: Y 4.5.4  Axial Force.................................................................................220
' |4 R8 v0 s9 S, @. `. w  4.5.5   Axial Force (Thrust)-torque Coupling .......................................221
6 z: U" N2 ]( v' n7 U4.6   Drill Point ..............................................................................................223
$ H: c7 i" s7 C5 G' ~6 p1 | 4.6.1  Basic Classifications ..................................................................223
. L. _) @! B4 Q5 I! K0 u$ W! H. b  4.6.2   Tool Geometry Measures to Increase the Allowable  + s& W# j, _1 Y' N4 u' n4 M0 x
Penetration Rate ....................................................................................224 & ^4 D3 u! Z3 y3 L$ X" r: p- F' y
4.7   Common Design and Manufacturing Flaws..........................................259 - r* q1 X# a' [9 o: B. ]6 @# l
  4.7.1   Web Eccentricity/ Lip Index Error.............................................260 ( X4 [4 Y; [( t4 h$ e( S
  4.7.2   Poor Surface Finish and Improper Tool Material/Hardness.......261 0 t- o% k: T/ H; I
4.7.3  Coolant Hole Location and Size.................................................263   n( d# Y+ |& ?  ?* x/ F
4.8   Tool Geometry ......................................................................................267
, a" \" `5 c( M! u/ ?  4.8.1   Straight-flute and Twist Drills Particularities............................269 + |) N" R$ j: e: G
  4.8.2   Geometry of the Typical Drill Point ..........................................270
. w: d4 ^) M0 w+ `8 y  4.8.3   Rake Angle.................................................................................272
* D" V0 _6 S! x1 n# l- W! Z  4.8.4  Inclination Angle .........................................................................280 , d0 X6 s- z' t: P
4.8.5  Flank Angle................................................................................281 & W, \4 b1 j3 s: ^" a) J7 b4 A) s: G
  4.8.6   Geometry of a Cutting Edge Located at an Angle  
" s+ f6 j, j8 x# B  Q9 h   to the y0-plane ............................................................................292 & r/ y3 {( m2 f, I/ p8 D
4.8.7  Chisel Edge ................................................................................295
6 ]: j+ f4 W3 `% x  4.8.8   Drill Flank is Formed by Two Planes: Generalization...............306 5 q! m0 h$ P" V5 v8 D
  4.8.9   Drill Flank Angle Formed by Three Planes ...............................310
* G" g) L  o8 E& G" A& K& K 4.8.10  Flank Formed by Quadratic Surfaces.........................................313
( Q) q0 I# I. _" l4.9   Load Over the Drill Cutting Edge .........................................................324
! d. z4 L2 t4 r   4.9.1   Uncut Chip Thickness in Drilling ..............................................325
* m; e% r$ i4 T# h) d% `- {  4.9.2   Load Distribution Over the Cutting Edge ..................................327 , U; @3 i- u3 G3 b; R: z' p
4.10  Drills with Curved and Segmented Cutting Edges ................................328 9 v; Q7 E- d/ b' P( Z4 y. G
  4.10.1 Load of the Cutting Part of a Drill with Curved Cutting Edges .329
0 Z3 C( W/ `' Q" P" O  4.10.2 Rake Angle.................................................................................332
' W8 C& [/ Z0 }References......................................................................................................337
6 r6 @7 u( R( G/ R1 n# r1 m. p5   Deep-hole Tools............................................................................................341
: K# @! K! c7 e# D5.1   Introduction ...........................................................................................341 : U7 a. \% ]$ c8 Z
5.2   Generic Classification of Deep-hole Machining Operations.................343 # z, _$ D. J: f0 D! I2 s3 c, I9 Y+ i
5.3   What Does ‘Self-piloting Tool’ Mean? .................................................345 , `4 e+ X, x3 @" J
  5.3.1   Force Balance in Self-piloting Tools..........................................345 - ~, m# \# n) i; |' x) W1 e0 j* |
5.4   Three Basic Kinematic Schemes of Drilling .........................................350 ' v5 s- Y3 }- J1 {0 S/ K6 `/ @
  5.4.1   Gundrill Rotates and the Workpiece is Stationary .....................351 / y) \2 n" c) o; ]0 ?7 B
5.4.2  Workpiece Rotates and the Gundrill is Stationary .....................352
/ M* N3 }9 E$ m, j: r- y% C 5.4.3  Counterrotation ..........................................................................352 7 A  l5 f6 w7 `: d7 K6 V
5.5   System Approach ..................................................................................353 % `8 L' p# p3 [. c' x
  5.5.1   Handling Tool Failure ................................................................353
; K9 {& \  d% Q' I" v5 J 5.5.2  System Considerations ...............................................................354
% m) ~9 |/ Q% o3 F3 y4 b: m5.6   Gundrills................................................................................................362 0 F: o  w2 k' q& h
5.6.1  Basic Geometry..........................................................................362 9 |! u% q1 k4 `# c: m% P( j8 y) o* T  U
5.6.2  Rake Surface ..............................................................................365
2 q* X: C) `3 W; [  5.6.3   Geometry of Major Flanks .........................................................370
; w; x0 S" x, s2 v0 k' o2 Z 5.6.4  System Considerations in Gundrill Design ................................390 ! t0 E' {) D' A! i6 D5 D/ b
5.6.5   Examplification of Significance of the High MWF Pressure
. ?: ?4 a$ E" ?4 T! b  in the Bottom Clearance Space ..................................................423
2 N9 l, Q! t# d5 o5 [& f4 x5 O  5.6.6   Example of Experimental Study ................................................425
6 A  i  `( O* M  5.6.7   Optimization of Tool Geometry.................................................439 * g. d9 A1 K' L3 M6 T7 A% Z; Q
References......................................................................................................440 / J# U3 ^2 o6 O/ }9 }0 ^
Appendix A  6 Y& O: u: r7 W6 p7 B
Basic Kinematics of Turning and Drilling.......................................................443
% M! e/ m! e! N$ f7 m$ @* l( bA.1   Introduction ...........................................................................................443 5 T7 l' B: _. G7 O% |
A.2  Turning and Boring ...............................................................................444
- N. b4 O; \( T: t8 ?/ r: ]  A.2.1  Basic Motions in Turning...........................................................444
5 C& q' H' D6 z. t. }" C  A.2.2  Cutting Speed in Turning and Boring ........................................448 4 j; y  [. U  k$ l
  A.2.3  Feed and Feed Rate ....................................................................448 # i6 t# e2 T  K- i% Q0 q1 f
  A.2.4  Depth of Cut...............................................................................449 0 j% t& o! u* g0 H  R+ [0 y6 E
A.2.5  Material Removal Rate ..............................................................449
4 b; {: z4 t, a A.2.6  Resultant Motion........................................................................450 6 o, e/ s7 `. v3 J6 d
A.3  Drilling and Reaming ............................................................................450 & j+ H# r$ v5 q8 K+ Q
A.3.1  Basic Motions in Drilling...........................................................450
! o. H2 U& D5 _# L- _ A.3.2  Machining Regime.....................................................................451
1 m2 y  }% L4 i' y/ c! Z3 d+ `A.4  Cutting Force and Power .......................................................................453 $ h2 {( ?0 r4 U7 Z  X
  A.4.1  Force System in Metal Cutting...................................................453
. _4 f" }- x+ n. v3 B* Z# X' j0 ~  A.4.2  Cutting Power ............................................................................454 4 Z  H3 S* s, c6 _6 R/ @6 J' }
A.4.3  Practical Assessment of the Cutting Force.................................455
3 Q0 v; p! S3 Y7 K, R0 \References......................................................................................................461
( d; R" K+ n" f7 a- P4 a$ D0 pAppendix B  
; D; {) W/ x6 N1 CANSI and ISO Turning Indexable Inserts and Holders.................................463 ; Z5 C; u: d. |# w) ~$ O
B.1   Indexable Inserts ...................................................................................463
6 e% L/ `8 Y) }% _; B  B.1.1  ANSI Code .................................................................................464
/ A5 I) G) Z8 @# S B.1.2  ISO Code....................................................................................471
& t: D$ T6 J* p2 M7 P& e  B.2 Tool Holders for Indexable Inserts (Single Point Tools) ......................491 : a' {0 z7 [5 ^+ A
  B.2.1   Symbol for the Method of Holding Horizontally Mounted  : U1 ?: }5 N5 T2 f+ E
Insert – Reference Position (1) ..............................................................492
( z% E8 D4 C* F) X4 p' b$ k  Z  B.2.2   Symbol for Insert Shape – Reference Position (2) .....................493
) H8 h  s# o% U  B.2.3   Symbol for Tool Style – Reference Position (3) ........................493
" O5 M" E& u9 Z9 l  B.2.4   Letter Symbol Identifying Insert Normal Clearance –  
3 e) ?* z& J6 _* w5 E   Reference Position (4)................................................................494
; J" j& k( [2 u1 v6 i. N$ Z2 T  B.2.5   Symbol for Tool Hand – Reference position (5) ........................494
1 O  g, Q$ |' u2 f7 [. ]  B.2.6  Symbol for Tool Height (Shank Height of Tool Holders  
% Y& t% p1 V" @  u; S+ F/ _    and Height of Cutting Edge) - Reference Position (6) ...............494
" b, q1 m8 `! _  B.2.7  Number Symbol Identifying Tool Holder Shank Width –  1 ^( }! f+ q. k5 p
   Reference Position (7)................................................................495 5 r- V1 F* f! K/ E
  B.2.8  Number Symbol Identifying Tool Length –  
9 @5 S4 ^5 ]7 c4 _) e$ S9 H   Reference Position (8)................................................................495 8 g; D& Z' E/ f" v4 ^' E# E0 M3 N
  B.2.9   Letter Symbol Identifying Indexable Insert Size –  
. J3 T& k1 e' G6 O: y& K5 l( p9 [   Reference Position (9)................................................................497 4 j% I/ F( L* e. m0 }% n
Appendix C  
& r) S; z2 W) J- g; }7 mBasics of Vector Analysis ..................................................................................499 - G2 A  b; k) X7 j& T9 {6 Q' q  u3 P, K
C.1   Vectors and Scalars ...............................................................................499
$ r6 T8 u  Z/ H1 wC.2   Definition and Representation...............................................................500
' @3 I0 S6 f2 O1 {$ ~1 e C.2.1  Definitions..................................................................................500
. m: F  U- |+ ]+ q" o C.2.2  Basic Vector Operations ............................................................503
" ~$ v. l' y* s! aC.3   Application Conveniences.....................................................................509
$ Q2 S. i9 s4 ]C.4  Rotation: Linear and Angular Velocities...............................................511 ' W, T, v: f' }. E  Q
  C.4.1   Planar Linear and Angular Velocities ........................................511 ; U2 x: {7 q! m0 {' M2 q: [
  C.4.2   Rotation: The Angular Velocity Vector .....................................515 : @/ \' s/ g& E1 Z8 ~
References ...........................................................................................................518
  m4 [; l. v! f/ S6 C! z2 hAppendix D  ' O4 e! p# q# i4 b1 \' E9 B. X
Hydraulic Losses: Basics and Gundrill Specifics............................................519 4 X" }) l: U& U9 W7 R# H% Q
D.1  Hydraulic Pressure Losses – General ....................................................519
0 l: L- H) s, s- |; n& R4 O" { D.1.1  Major Losses: Friction Factor ....................................................520 8 Q& v/ w6 e) X* e* Z
  D.1.2  Minor Losses (Losses Due to Form Resistance) ........................521 ! s8 V3 I6 T2 c" D
D.2  Concept of the Critical MWF Velocity and Flow Rate .........................521 # d: K4 E0 `* q2 c8 n( s* B# Z
  D.2.1  MWF Flow Rate Needed for Reliable Chip Transportation.......522 , k% t& O, S+ s6 P6 y$ Y+ p7 r  J
  D.2.3  Example D.1...............................................................................527
# L" K. c' |* U. {3 UD.3   Inlet MWF pressure...............................................................................528
5 n# y% p6 L9 w5 m7 S5 uD.4  Analysis of Hydraulic Resistances ........................................................532 8 \' N& v1 I) G) c( W
  D.4.1  Analysis of Hydraulic Resistances Over Which the Designer  
9 Q4 R; G$ |9 r( y( m3 E% C3 J) k    Has No or Little Control ............................................................532 5 \7 g) n* s. m) q
  D.4.2  Variable Resistances Over Which the Designer Has Control ....535
+ r9 M+ I' O- N2 i6 ^! q8 E* rD.5   Practical Implementation in the Drill Design ........................................539 - r/ D% c8 h6 U
References ..........................................................................................................543 $ I* m. w. z3 V. |9 s5 O1 c+ G) P
Appendix E 0 A4 r8 _0 U5 U9 `8 y
Requirements and Examples of Cutting Tool Drawings................................545 5 z& M1 p; j) `6 }
E.1   Introduction ...........................................................................................545
" [3 U4 Y, l# \1 DE.2   Tool Drawings – the Existent Practice ..................................................546 % f! |/ u" {; B0 j6 {9 y
E.3   Tool Drawing Requrements ..................................................................548 ; @) V* V& \4 G0 I
E.4   Examples of Tool Drawing ...................................................................553
* j, D' a& o$ K" x0 P$ `- lReferences ..........................................................................................................559
" O/ \) H7 l/ X+ b: A9 DIndex…………………………………………………………………………….561
* U& R/ v; Q& u0 O, `2 `- j) z 1 h) `7 [# q( Z  D
+ ~* P) c! R: ^& B/ p  T
发表于 2011-6-25 13:07:50 | 显示全部楼层
都是些神马?
发表于 2011-6-25 13:33:41 | 显示全部楼层
埋头挖矿中。。。。。。。。。
发表于 2011-6-26 15:14:56 | 显示全部楼层
好东西啊。。。只是,刀具不是我的工作。。。顶起,不沉。。。
 楼主| 发表于 2011-6-26 18:10:54 | 显示全部楼层
专业人士自有看法。
发表于 2011-6-27 18:42:38 | 显示全部楼层
好东西啊,英文的,看着太费劲了
发表于 2011-6-27 21:53:22 | 显示全部楼层
从网上查找这本书是Springer Series in Advanced Manufacturing丛书中的一本
0 c+ U1 R' w( X  P请问这套丛书共包含哪几本书
您需要登录后才可以回帖 登录 | 注册会员

本版积分规则

Archiver|手机版|小黑屋|机械社区 ( 京ICP备10217105号-1,京ICP证050210号,浙公网安备33038202004372号 )

GMT+8, 2025-6-17 12:49 , Processed in 0.077591 second(s), 19 queries , Gzip On.

Powered by Discuz! X3.5 Licensed

© 2001-2025 Discuz! Team.

快速回复 返回顶部 返回列表