机械社区

 找回密码
 注册会员

QQ登录

只需一步,快速开始

搜索
查看: 7579|回复: 19

Geometry_of_Single_point_Turning_Tools_and_Drills

[复制链接]
发表于 2011-6-23 22:58:22 | 显示全部楼层 |阅读模式
本帖最后由 机器鼠 于 2011-6-23 23:18 编辑
6 z' F1 p: U' @. \3 S( N, l9 ^6 e
+ Q9 Y4 A; \* k. ^+ VGeometry_of_Single_point_Turning_Tools_and_Drills__Fundamentals_and_Practical_Applications.pdf/ ]( G5 g+ N; p3 w
有要的吗?刀具,细节,很到位。英文版。
  D6 L: ]: E# C8 `- O# S国内无人这么细研究的吧?

Geometry_of_Single_point_Turning_Tools_and_Drills__Fundamentals_and_Practical_Ap.rar

4.35 MB, 阅读权限: 90, 下载次数: 8, 下载积分: 威望 -10 点

7

Geometry_of_Single_point_Turning_Tools_and_Drills__Fundamentals_and_Practical_Ap.rar

4.35 MB, 下载次数: 7, 下载积分: 威望 -10 点

6

Geometry_of_Single_point_Turning_Tools_and_Drills__Fundamentals_and_Practical_Ap.rar

4.35 MB, 下载次数: 8, 下载积分: 威望 -10 点

5

Geometry_of_Single_point_Turning_Tools_and_Drills__Fundamentals_and_Practical_Ap.rar

4.35 MB, 下载次数: 6, 下载积分: 威望 -10 点

4

Geometry_of_Single_point_Turning_Tools_and_Drills__Fundamentals_and_Practical_Ap.rar

4.35 MB, 下载次数: 6, 下载积分: 威望 -10 点

3

Geometry_of_Single_point_Turning_Tools_and_Drills__Fundamentals_and_Practical_Ap.rar

4.35 MB, 下载次数: 6, 下载积分: 威望 -10 点

2

Geometry_of_Single_point_Turning_Tools_and_Drills__Fundamentals_and_Practical_Ap.rar

140.75 KB, 阅读权限: 90, 下载次数: 7, 下载积分: 威望 -10 点

1

回复

使用道具 举报

发表于 2011-6-24 19:17:16 | 显示全部楼层
说什么的?
回复 支持 反对

使用道具 举报

 楼主| 发表于 2011-6-24 22:02:25 | 显示全部楼层
Although almost any book and/or text on metal cutting, cutting tool design, and
5 `2 d9 t9 A, x+ [3 K+ J" rmanufacturing process discusses to a certain extent the tool geometry, the body of
* Q7 ^/ S3 p, D* Rknowledge on the subject is scattered and  confusing. Moreover, there is no clear 7 m! f8 |7 @8 V* F: G1 Q
objective(s) set in the selection of the tool geometry parameters so that an answer
! U! r1 I  N# Hto a simple question about optimal tool geometry cannot be found in the literature " Q* A9 n9 P4 }
on the subject. This is because a criterion (criteria) of optimization is not clear, on
5 z& [  A- I: D7 t6 G3 y4 hone hand, and because the role of cutting tool geometry in machining process
. \8 Q/ O9 {' r& `; p6 j: A" Xoptimization has never been studied systematically, on the other. As a result, many
2 R( A/ y2 @6 S5 L3 W6 ~# b0 Apractical tool/process designers are forced to use extremely vague ranges of tool % A' r  [4 D* @# P5 T7 C# F
geometry parameters provided by handbooks. Being at least 20+ years outdated,
( D. `2 f1 \4 o  Y2 t- W4 lthese data do not account for any particularities of a machining operation including " d' _: V! j" m1 s
a particular grade of tool material, the condition of the machine used, the cutting
2 j' W* g. ^$ Qfluid, properties and metallurgical condition of the work material, requirements to ! d2 l$ y- C. C# @2 Z
the integrity of the machined surface, etc.
' s; Q/ i& D2 o7 |* b7 o6 o' V! GUnfortunately, while today's professionals, practitioners, and students are
1 r+ ?5 [% _  B3 R. E7 @interested in cutting tool geometry, they are doomed to struggle with the confusing
! f; x0 Y% d; ^7 G/ ^terminology. When one does not know what the words (terms) mean, it is easy to
! _$ |" Y' O) d4 i/ Cslip into thinking that the matter is difficult, when actually the ideas are simple,
0 p: W5 l: o7 X. x* s+ |; `6 B7 S8 }% Oeasy to grasp, and fun to consider. It is the terms that get in the way, that stand as a * r" J- M# d, m# a0 j% w+ M% t
wall between many practitioners and science. This books attempts to turn those 5 V% c0 H, Q) j0 v/ b- `5 E
walls into windows, so that readers can peer in and join in the fun of proper tool
) h- ]$ q2 N6 Fdesign. # A# R3 s8 m8 \  Y
So, why am I writing this book? There are a few reasons, but first and foremost, + J" E& I) A3 b; N" ?% _5 H
because I am a true believer in what we call technical literacy. I believe that 8 F) i+ ?. X" B/ y
everyone involved in the metal cutting business should understand the essence and
  L+ `; o: f9 }  p% e7 g% Y) ?importance of cutting tool geometry. In my opinion, this understanding is key to * w) M+ X& D) G+ w( X* B7 L% S
improving efficiency of practically all machining operations. For the first time, this
. y( i1 v& f$ L( ?8 I: t8 k( qbook presents and explains the direct correlations between tool geometry and tool
3 ~  w( a3 o, L! t  Q- Tperformance. The second reason is that I felt that there is no comprehensive book
6 o  m  E: R" |on the subject so professionals, practitioners, and students do not have a text from
) Y6 k: t7 Q7 T+ n1 l; k2 }which to learn more on the subject and thus appreciate the real value of tool
5 b+ c. r4 ^5 n8 Ygeometry. Finally, I wanted to share the key elements of tool geometry that I felt & g$ M6 F; \8 e# x5 Z& p" o
were not broadly understood and thus used in the tool design practice and in / f+ a" E# g8 B; G1 t; o2 |- @
optimization of machining operations in industry. Moreover, being directly & V4 _0 r8 E) P1 U" g7 G+ C0 I( P
involved in the launch of many modern manufacturing facilities equipped with
' T* {% i, c0 q2 ?state-of-the-art high-precision machines, I found that the cutting tool industry is not . ^* R3 C& _& _: S( {" B
ready to meet the challenge of modern metal cutting applications. One of the key : g; p3 \" l: J7 H& T" ]
issues is the definite lack of understanding of the basics of tool geometry of
5 e" o4 N1 a& ^, s! W7 [/ jstandard and application-specific tools.
5 h. Z- {! b; x6 CThe lack of information on cutting tool geometry and its influence on the , w, R% u  m) W
outcome of machining operations can be explained as follows. Many great findings ! L0 `% Y+ v, U2 z+ O8 p
on tool geometry were published a long time ago when neither CNC grinding 7 m% j! T/ j. j# C- @9 d) A
machines capable of reproducing any kind of tool geometry were available nor $ j6 U7 @3 {4 ]
were computers to calculate parameters of such geometry (using numerical
2 L! G+ S" Q0 D4 j& G7 _9 z0 Z* rmethods) common. Manual grinding using standard 2- and 3-axis simple grinding
" u. Z7 ^0 P" pfeatures was common so the major requirement for tool geometry was the simpler
9 O! v" x. i, X* q  ithe better. Moreover, old, insufficiently rigid machines, aged tool holders and part % p( I# w. w" X1 `+ P0 _
fixtures, and poor metal working fluid (MWF) selection and maintenance levered
! M- |+ {& u9 Y( c! d( Nany advancement in tool geometry as its influence could not be distinguished under
2 |8 n: m% X/ c6 f0 b. c! nthese conditions. Besides, a great scatter in the properties of tool materials in the 7 B. d2 F) l& T8 G: y% u
past did not allow distinguishing of the true influence of tool geometry. As a result, 1 _" J3 |6 R2 J$ L: m8 ]4 ]
studies on tool geometry were reduced to  theoretical considerations of features of
# G# R& c& I" M! _( [twist drills and some gear manufacturing  tools such as hobs, shaving cutters,
- w) h* P% a8 Z& }! E8 nshapers, etc.  
5 a! C) ]3 X/ `$ A7 a3 KGradually, once mighty chapters on tool geometry in metal cutting and tool $ S3 G) J# a. G& k8 r; p
design books were reduced to sections of few pages where no correlation between
) s: }" s7 O3 v+ Rtool geometry and tool performance is normally considered. What is left is a ! B7 ], \! ]$ z8 }  Y7 v% u+ ]
general perception that the so-called “positive geometry” is somehow better than
% u0 W+ l2 i0 N& R! Z“negative geometry.” As such, there is no quantitative translation of the word
; `$ o1 f( S8 D3 e. m2 y9 o“better” into the language  of technical data although a great number of articles 7 e2 S6 L8 R' z2 L( W. U6 J
written in many professional magazines discuss the qualitative advantages of
1 w* Q4 ]1 W9 E5 T! d" M“positive geometry.” For example, one popular manufacturing magazine article
5 V9 G8 f$ N/ Xread “Negative rake tools have a much  stronger leading edge and tend to push 6 u1 E. `# ~* K- l& a1 s1 v
against the workpiece in the direction of the cutter feed. This geometry is less free
! [& _- [* n3 `& n% \) ccutting than positive rakes and so consumes more horsepower to cut.” Reading ( N+ S) X8 \$ U$ P& f4 N, t- P
these articles one may wonder why cutting tool manufacturers did not switch their
% `9 R& h$ Q& Vtool designs completely to this mysterious “positive geometry” or why some of
2 `2 W# Y% G- e: hthem still investigate and promote negative geometry. ; M- r3 j' m4 A" r' y2 _. l
During recent decades, the metalworking industry underwent several important ; ?) W; B" s2 h2 \* ?. \, {+ a  H2 t
changes that should bring cutting tool geometry into the forefront of tool design
/ m  m/ c8 o" q' }9 \2 l! Aand implementation:
回复 支持 反对

使用道具 举报

 楼主| 发表于 2011-6-24 22:03:42 | 显示全部楼层
1   What Does It Mean “Metal Cutting”? ...........................................................1 $ y& l; s1 S- W5 U+ X
1.1   Introduction ...............................................................................................1 / v6 J! ~: k7 a0 W% v
1.2   Known Results and Comparison with Other Forming Processes ..............2
8 `3 _8 _. y- U- w$ E& }  1.2.1   Single-shear Plane Model of Metal Cutting ...................................2
9 x/ P! Z! [! z! S- i  1.2.2   Metal Cutting vs. Other Closely Related Manufacturing  
. a6 p2 M& O$ ^" O9 M8 d$ m Operations .................................................................................................5 2 M) t) W- S! Z% N, v/ j9 b. a6 @
1.3   What Went Wrong in the Representation of Metal Cutting?...................22
0 T! L0 t9 _0 X) P& {  1.3.1   Force Diagram..............................................................................23
( e' n" P/ e2 e" S0 l, I1 c7 e  1.3.2   Resistance of the Work Material in Cutting.................................25
6 m1 }# J  u' J6 x1 l; ]8 h: H/ b# i  1.3.3   Comparison of the Known Solutions for the Single-shear  
& k" Y: s( U4 M6 b4 o) D  Plane Model with Experimental Results .................................................27
; F5 B  X& J9 Y, G# C; }+ }1 c# L- B1.4   What is Metal Cutting?............................................................................28 7 H: B8 f8 p/ m: z" n
  1.4.1   Importance to Know the Right Answer........................................28 . Z, E0 c: _! y) n$ j
1.4.2  Definition .....................................................................................28
2 ~' `" |% v3 q- p# n4 d0 G; h  W  1.4.3   Relevance to the Cutting Tool Geometry.....................................29
7 M) _8 p3 b& m6 n% n6 C3 |% s1.5   Fundamental Laws of Metal Cutting.......................................................32
+ u1 w9 [- L) Q, O" @+ {2 |  1.5.1   Optimal Cutting Temperature – Makarow’s Law........................32 & \) p1 \% ]4 k4 F; C; Y9 l% j3 p# @
1.5.2  Deformation Law.........................................................................35 6 G( t1 ^: `" d! i# }
References........................................................................................................50 6 Q( X. A" r6 p. R
2   Basic Definitions and Cutting Tool Geometry,  
) L, `+ ~8 Q4 zSingle Point Cutting Tools ............................................................................55 ; p, n1 \4 _$ x; U1 r9 a7 R
2.1   Basic Terms and Definitions ...................................................................55
7 u, u' Y8 E5 X 2.1.1  Workpiece Surfaces.......................................................................57 . S+ K5 x$ B" `( w1 v! j8 I
2.1.2  Tool Surfaces and Elements ..........................................................57
; j' W* j* R3 T) N6 S  C3 b 2.1.3  Tool and Workpiece Motions.......................................................57 ) D3 A1 \: J; }8 W3 j/ a! e
2.1.4  Types of Cutting ............................................................................58
  {2 ~7 U  g: S) C6 d7 j1 d2.2   Cutting Tool Geometry Standards...........................................................60
( G, W* J1 z2 }; P2.3   Systems of Consideration of Tool Geometry ..........................................61
- v# B8 M% y7 s) f. ]. c% t, |0 T, B2.4.  Tool-in-hand System (T-hand-S) .......................................................64
$ [0 f. n0 X7 P, k; x1 F$ E# _: ~  2.4.1   Tool-in-hand Coordinate System.................................................64 5 i0 ?3 C+ `* e: c6 g  ~5 s
2.4.2  References Planes ........................................................................66 * X6 G0 q5 z" S+ k. i- V: y* m
2.4.3  Tool Angles..................................................................................68
" ^  R  P2 r0 Z  2.4.4   Geometry of Cutting Tools with Indexable Inserts ......................74
  G* Q( H8 m# x0 r$ \2.5   Tool-in-machine System (T-mach-S)......................................................84
3 {% r% t2 \* o# y 2.5.1  Angles ..........................................................................................84
: q8 v# F: v& w$ G: ~  }7 j  2.5.2   Example 2.3 .................................................................................88 ) P1 |; Q* v% V8 h; p* m- w
2.6   Tool-in-use System (T-use-S) .................................................................90 3 ?% D) C8 z4 L
2.6.1  Reference Planes ..........................................................................91
$ n  `+ t' `3 ~7 N- K* z 2.6.2  The Concept .................................................................................92 / D8 e7 m( {# K) A" S& B. k- b
  2.6.3   Modification of the T-hand-S Cool Geometry .............................92 : v7 l4 E5 N7 ]6 D, I
  2.6.4   Kinematic Angles.........................................................................98
& B3 u  P0 b2 k8 P2 }7 i  2.6.5   Example 2.4 ...............................................................................100
8 l' }  ?5 `' P) G2.7   Avalanched Representation of the Cutting Tool Geometry  
# I' X+ f4 A8 S- {( P in T-hand-S............................................................................................102 / g4 V5 l0 v8 d
2.7.1  Basic Tool Geometry .................................................................102
' Y( Z- L. D% L# b2 \! g+ G& o- Z" b8 Z2.7.2   Determination of Cutting Tool Angles Relation
& `0 Z0 ?2 C  N7 j% A' {% {* Q  for a Wiper Cutting Insert ..........................................................108 2 z0 D& {8 b  Q( U
  2.7.3   Determination of Cutting Tool Angles  1 B# h5 j0 j! X: [; i, T
   for a Single-point Tool ...............................................................110 / o. t. a! e* z0 ^9 B
  2.7.4   Flank Angles of a Dovetail Forming Tool .................................117 0 p6 m7 j, j) n7 U7 ]1 }
  2.7.5   Summation of Several Motions..................................................119
( Z  C4 j0 K; H  Z. H/ R* ^References......................................................................................................125 4 N1 u6 x8 P# s1 J* f) y
3  Fundamentals of the Selection of Cutting Tool Geometry Parameters...127 4 d! f, F/ s+ t- G% ]4 k
3.1   Introduction ...........................................................................................127
7 T6 p; u4 N1 ^$ d# Q" K, S3.2   General Considerations in the Selection of Parameters  . }. k9 W. I5 u2 g: q% ?4 i3 m# O. H
  of Cutting Tool Geometry .....................................................................129
: f* E; q7 H2 b9 H: i 3.2.1 Known Results .............................................................................129 5 U: P) ~- L0 ?$ ^0 S" e2 x
  3.2.2 Ideal Tool Geometry and Constrains............................................130
: Z  c2 {3 M+ ^$ C  3.2.3 Practical Gage for Experimental Evaluation of Tool Geometry...132
6 p% c/ s; _) L! f% S, x" \# L3.3   Tool Cutting Edge Angles .....................................................................132
0 ~$ ^, v4 ?6 x" H% z 3.3.1  General Consideration................................................................132
# h# ?( K# o, o. [! y7 W5 N% F  3.3.2   Uncut ChipT in Non-free Cutting ..............................................134   k6 Z# i% w2 u/ n, p
  3.3.3   Influence on the Surface Finish..................................................142
2 P. I4 j( d8 ]; c 3.3.4  Tools with κr > 90°.....................................................................144 ) {1 i& z" r: `0 Q( N. j
  3.3.5   Tool Minor Cutting Edge Angle ................................................147 0 h* l. h3 q" i2 h  v
3.4.  Edge Preparation ...................................................................................161
" \8 h) K' }5 F* J4 Y6 z9 Z 3.4.1  General .......................................................................................161 ; B: U6 P! Z! @# J8 I+ P' e; v; V
  3.4.2   Shape and Extent........................................................................163 3 W  z7 Y0 x6 k5 j: ]/ F/ A
3.4.3  Limitations .................................................................................163 : p% `, }) K9 v+ h3 _, f0 I
  3.4.4   What Edge Preparation Actually Does.......................................169
, |! X+ F% M+ E5 R: a8 @" V3.5   Rake Angle............................................................................................171
8 b# T# v2 F% N- }3 F2 I 3.5.1  Introduction................................................................................171
3 Y' \6 e/ l3 `  3.5.2   Influence on Plastic Deformation and Generazliations ..............175
  D/ k/ h: h" a" w8 K5 ]  3.5.3   Effective Rake Angle .................................................................183 # e! t, f6 f# M8 u/ D* O5 Y; S
  3.5.4   Conditions for Using High Rake Angles....................................189
3 h9 E& K6 G# H3.6   Flank Angle ...........................................................................................191
- U! v" h8 ]6 {% R1 S  o3.7   Inclination Angle...................................................................................193
$ ~" ^0 ~+ c) U  G0 K6 k6 K3 Q      3.7.1   Turning with Rotary Tools.........................................................195 1 b& B9 N% `9 W4 `" }
3.7.2  Helical Treading Taps and Broaches..........................................197 9 }( {9 s$ E. h' u$ \4 c, \5 h
3.7.3  Milling Tools..............................................................................198 1 _: Y4 [! [& e3 n
References......................................................................................................201 ) x4 _, T! S7 G, V
4   Straight Flute and Twist Drills ...................................................................205
# K2 R9 @$ _( p% V# e7 l4.1   Introduction ...........................................................................................205 $ k1 m! h  u! R4 B7 T
4.2   Classification.........................................................................................206
3 C/ U3 z7 o1 Z1 u( ~* Z6 `4.3   Basic Terms...........................................................................................208
, U# E) k* ?$ m# u* c4.4   System Approach ..................................................................................211 & H2 p# `( g, [; F# x- h0 `2 X( u9 G, d
4.4.1  System Objective .......................................................................212
+ p* K. ?" a  { 4.4.2  Understanding the Drilling System............................................212
- Y' F, Z# w$ Q# P. K% m8 S  4.4.3.  Understanding the Tool..............................................................212
* H& F, z! M5 h  H2 @% N7 |5 V& r4.5.  Force System Constrains on the Drill Penetration Rate ........................213 $ L& v- c& y& F8 ]) d3 W7 i2 b
  4.5.1   Force-balance Problem in Conventional Drills ..........................213
5 f; X. u/ X+ a8 J. U  4.5.2   Constrains on the Drill Penetration Rate....................................218
) N6 v; I; L/ e0 b6 ^+ d 4.5.3  Drilling Torque ..........................................................................219
0 ^9 ]8 f* J; m* V 4.5.4  Axial Force.................................................................................220 - o$ s) y& }$ S/ R* m. d0 C
  4.5.5   Axial Force (Thrust)-torque Coupling .......................................221 7 C; T8 S6 }' L& I) V$ R0 \/ g
4.6   Drill Point ..............................................................................................223
* e5 j. j7 m: R4 q* A 4.6.1  Basic Classifications ..................................................................223   [4 R# @4 r" e2 Z
  4.6.2   Tool Geometry Measures to Increase the Allowable  
3 B; }3 p; |1 E0 ~ Penetration Rate ....................................................................................224 ! M: k. }7 O9 ?
4.7   Common Design and Manufacturing Flaws..........................................259
8 S" S- C; |5 g, L, s  4.7.1   Web Eccentricity/ Lip Index Error.............................................260
8 S0 D2 U1 `. m, V+ t9 i3 L' ?  4.7.2   Poor Surface Finish and Improper Tool Material/Hardness.......261 3 Q( m9 @- s! N9 v
4.7.3  Coolant Hole Location and Size.................................................263   d% H6 j% X7 D" b4 t# W( F# w
4.8   Tool Geometry ......................................................................................267
9 e" h4 N. w5 R# ?; v% v  4.8.1   Straight-flute and Twist Drills Particularities............................269 + u, P' \% Z7 x- e+ c! ^
  4.8.2   Geometry of the Typical Drill Point ..........................................270
7 j0 b; r1 c+ p8 `9 b+ x* T  d5 y  4.8.3   Rake Angle.................................................................................272 1 ]8 i( m+ f2 @( s
  4.8.4  Inclination Angle .........................................................................280
/ `2 h3 t) w. w7 X' W 4.8.5  Flank Angle................................................................................281 + O9 c7 M! r  [& L( x
  4.8.6   Geometry of a Cutting Edge Located at an Angle  6 [, N# T( u! J6 ?
   to the y0-plane ............................................................................292 & i5 \1 s/ s  Y" j
4.8.7  Chisel Edge ................................................................................295
% [1 i3 P- W6 w* a, o6 s7 B$ Z! F  4.8.8   Drill Flank is Formed by Two Planes: Generalization...............306
9 d- m2 \/ Q3 H8 H/ ]' n$ P  4.8.9   Drill Flank Angle Formed by Three Planes ...............................310
4 ~- N& S. p  O/ ^$ m% B; B6 _ 4.8.10  Flank Formed by Quadratic Surfaces.........................................313 ) A; J# Z8 p& ]1 g" {
4.9   Load Over the Drill Cutting Edge .........................................................324 3 F, ~7 [% `: w7 w  p; W; h2 D& J
   4.9.1   Uncut Chip Thickness in Drilling ..............................................325
* n5 R2 L4 R/ v7 {: E: u$ Y  ]  o  4.9.2   Load Distribution Over the Cutting Edge ..................................327 7 S' K( {. n( L
4.10  Drills with Curved and Segmented Cutting Edges ................................328
' B5 O! S9 f2 ~; B! ^$ Q+ q  4.10.1 Load of the Cutting Part of a Drill with Curved Cutting Edges .329
$ b" K) t7 T$ H% h! [- L  4.10.2 Rake Angle.................................................................................332
' j/ Y4 }! W) K7 ^0 p8 ?* WReferences......................................................................................................337
% s  T9 b* U% X: }' K, W5   Deep-hole Tools............................................................................................341 $ O& W, N- B" z6 c& L. Q) l
5.1   Introduction ...........................................................................................341
: E+ M# s0 A7 w3 l+ u5 ]% r/ s5.2   Generic Classification of Deep-hole Machining Operations.................343
, w. f4 |! P8 S0 |, r* P! c$ a5.3   What Does ‘Self-piloting Tool’ Mean? .................................................345
; Z- Z. T& X! ?& S/ P; h  5.3.1   Force Balance in Self-piloting Tools..........................................345
1 U5 `0 r, v+ f% n& S( h0 l5.4   Three Basic Kinematic Schemes of Drilling .........................................350
* G2 n7 [1 u% c7 ]* \- @4 a  5.4.1   Gundrill Rotates and the Workpiece is Stationary .....................351
2 E% w% s+ h- n+ k- B7 {+ J7 c9 t 5.4.2  Workpiece Rotates and the Gundrill is Stationary .....................352 ' r4 o2 u+ H6 ~7 U) L7 B9 M
5.4.3  Counterrotation ..........................................................................352 9 C4 C+ e, f! h; t
5.5   System Approach ..................................................................................353 4 y0 U3 _: L& Y' C
  5.5.1   Handling Tool Failure ................................................................353
- |( Q. u. r: ?# _& W* y0 q$ j6 ?# i 5.5.2  System Considerations ...............................................................354
/ P$ G8 p; |; ?0 d0 o2 h+ ~; o5 `5.6   Gundrills................................................................................................362
# r/ u+ E. M: Z 5.6.1  Basic Geometry..........................................................................362
0 K# G- y8 K9 a' Q5 S# y 5.6.2  Rake Surface ..............................................................................365 3 z/ k9 e( ~( X# |: t
  5.6.3   Geometry of Major Flanks .........................................................370
+ B( b5 B1 L: l8 i% \" ` 5.6.4  System Considerations in Gundrill Design ................................390
8 v, S- L: v% y! p& C( q. ]5.6.5   Examplification of Significance of the High MWF Pressure 3 P% \6 ~) q- @& o: {
  in the Bottom Clearance Space ..................................................423
9 ^: O' c& J1 w: P- d  q9 u  5.6.6   Example of Experimental Study ................................................425 ! O4 y8 l2 U, |
  5.6.7   Optimization of Tool Geometry.................................................439 6 h3 Z: A. y9 T" B! F
References......................................................................................................440 ( G5 B- M+ d1 U( e$ C
Appendix A  5 k4 f- ~& B# a% y2 `; B
Basic Kinematics of Turning and Drilling.......................................................443 & a3 a8 P. N- M; s2 s
A.1   Introduction ...........................................................................................443 ( i2 W% J" N) ^& }% s
A.2  Turning and Boring ...............................................................................444
- [' x/ }$ p  g  r( P  a9 E  A.2.1  Basic Motions in Turning...........................................................444
3 [8 k) f0 Z- ]1 J  A.2.2  Cutting Speed in Turning and Boring ........................................448 5 n  z. v/ r7 g/ ~. R9 Q+ @! z. I# ~
  A.2.3  Feed and Feed Rate ....................................................................448
  E" ~& V) P0 b3 R4 ]7 S  A.2.4  Depth of Cut...............................................................................449 % @8 i; q. g* [3 ]/ ]* ^7 y# i
A.2.5  Material Removal Rate ..............................................................449
+ m3 f# V+ X  S' \9 K  `/ } A.2.6  Resultant Motion........................................................................450
4 K/ ]9 q6 B1 a2 GA.3  Drilling and Reaming ............................................................................450 & S# {. I8 B( ]; Z$ a+ A$ y4 Z
A.3.1  Basic Motions in Drilling...........................................................450 * u0 O# C! ]* `+ o6 M) H
A.3.2  Machining Regime.....................................................................451 , z( r4 J9 ~" y' V- r- i4 m
A.4  Cutting Force and Power .......................................................................453
3 r9 C2 R  \. k) k. y( h  A.4.1  Force System in Metal Cutting...................................................453 + m8 k5 a* J" d
  A.4.2  Cutting Power ............................................................................454
+ L& H/ d! d- R& H A.4.3  Practical Assessment of the Cutting Force.................................455
) a3 B6 S& o9 ^7 S  IReferences......................................................................................................461
( S: ]/ M- }, L- d2 |$ mAppendix B  % k7 J9 ]8 t' U' g6 ?6 v
ANSI and ISO Turning Indexable Inserts and Holders.................................463 : T/ S; P/ J! _. G
B.1   Indexable Inserts ...................................................................................463 6 w8 R  p8 ?% N  A* v
  B.1.1  ANSI Code .................................................................................464 ( M: a0 _5 N7 w& \( U' y2 u8 K
B.1.2  ISO Code....................................................................................471
- }4 L  J1 o7 n8 E7 c. w  B.2 Tool Holders for Indexable Inserts (Single Point Tools) ......................491
' C+ z9 k5 v5 v8 s  B.2.1   Symbol for the Method of Holding Horizontally Mounted  . n3 i2 V) z5 s4 ~; Y6 Q
Insert – Reference Position (1) ..............................................................492
" L* ~/ ~/ n! y, P$ I  B.2.2   Symbol for Insert Shape – Reference Position (2) .....................493
# {+ k' A* S# U  B.2.3   Symbol for Tool Style – Reference Position (3) ........................493
( _& _' O& l3 z  B.2.4   Letter Symbol Identifying Insert Normal Clearance –  3 f2 `8 o4 [3 ^" `* s; P
   Reference Position (4)................................................................494
2 L4 F8 X2 T' r9 ?! }7 U+ \; K  B.2.5   Symbol for Tool Hand – Reference position (5) ........................494 0 {; I2 m8 X0 b3 U
  B.2.6  Symbol for Tool Height (Shank Height of Tool Holders    D/ J7 D) B( q' T: V
    and Height of Cutting Edge) - Reference Position (6) ...............494 3 G; S* ]. G- ]$ J, W% t
  B.2.7  Number Symbol Identifying Tool Holder Shank Width –  
- k& k  \! q+ G5 e. e   Reference Position (7)................................................................495 % p0 S2 I0 b' s& |& @
  B.2.8  Number Symbol Identifying Tool Length –  
/ j* l4 }, V4 \3 t   Reference Position (8)................................................................495 ! P" M4 e% q0 V$ `1 D
  B.2.9   Letter Symbol Identifying Indexable Insert Size –  
$ n- {$ N) U4 m- f   Reference Position (9)................................................................497   T& t2 X: h7 s; A1 a$ q7 c
Appendix C  
! g$ e4 h& ~  n$ v6 a4 \  a: G. sBasics of Vector Analysis ..................................................................................499
: B" V5 d$ D  q# [7 VC.1   Vectors and Scalars ...............................................................................499 / B  ]4 h, o! f4 X' ?$ T
C.2   Definition and Representation...............................................................500
0 o6 t0 j, U1 @( c1 t6 W) \ C.2.1  Definitions..................................................................................500 - Q' E/ O' L, @/ E
C.2.2  Basic Vector Operations ............................................................503 1 ^$ A$ \2 P+ Q3 ], r# j9 S
C.3   Application Conveniences.....................................................................509 ! e0 ]0 Z. e5 x# D+ u$ ~
C.4  Rotation: Linear and Angular Velocities...............................................511 - d/ r  z( T$ e2 m( ^; B
  C.4.1   Planar Linear and Angular Velocities ........................................511
& ?$ |' |# i% {; @' {  C.4.2   Rotation: The Angular Velocity Vector .....................................515
8 y* M8 i5 q4 x1 t; s, jReferences ...........................................................................................................518 ' W/ M: A) `7 c# Z3 J) b3 c
Appendix D  
# o1 s4 [1 u% b3 ~5 [! oHydraulic Losses: Basics and Gundrill Specifics............................................519 1 \) P" B0 B# r
D.1  Hydraulic Pressure Losses – General ....................................................519
. z+ M8 M; Y, q# F' M! i# X D.1.1  Major Losses: Friction Factor ....................................................520
% |! \8 [3 M% F7 h5 }8 H  S" |* @+ ^  D.1.2  Minor Losses (Losses Due to Form Resistance) ........................521 , b5 g$ ?/ r# L2 l$ g$ z8 \6 a1 W
D.2  Concept of the Critical MWF Velocity and Flow Rate .........................521
# h/ ]+ e6 O6 ~# _  D.2.1  MWF Flow Rate Needed for Reliable Chip Transportation.......522
1 W8 ]- Y% C1 C$ }  D.2.3  Example D.1...............................................................................527 7 a- F9 R; `) a! R- f6 o
D.3   Inlet MWF pressure...............................................................................528 $ f+ O0 T  z  m( b! \
D.4  Analysis of Hydraulic Resistances ........................................................532
: N0 Y' e8 M6 s6 ?4 b& P. Q% t+ Y1 R4 }  D.4.1  Analysis of Hydraulic Resistances Over Which the Designer  # x1 v* |+ X" ^/ Y
    Has No or Little Control ............................................................532
  w2 `9 P' T9 `/ d+ I4 P* E9 X  D.4.2  Variable Resistances Over Which the Designer Has Control ....535 , V# _; ^3 y) a; W, D
D.5   Practical Implementation in the Drill Design ........................................539
2 T: z& o1 ^5 jReferences ..........................................................................................................543
8 u8 O6 t3 S& B, w2 H& O9 cAppendix E
$ x& ^3 X( E! a0 URequirements and Examples of Cutting Tool Drawings................................545
& s7 ~# v/ Q; j" rE.1   Introduction ...........................................................................................545
. f* C, C" y- |; AE.2   Tool Drawings – the Existent Practice ..................................................546
9 D2 ~6 p# q& n7 C6 FE.3   Tool Drawing Requrements ..................................................................548 ! F* E1 y" C/ \( X
E.4   Examples of Tool Drawing ...................................................................553
; J3 e1 @6 Q3 x: XReferences ..........................................................................................................559 : v/ e$ l( L& F5 y  g
Index…………………………………………………………………………….561 - c1 z! o; ?$ q3 h2 z

) B: y3 h0 v, O* q  M+ i7 p9 Q
8 E2 A6 f/ ^" {1 w& P% O* n. H5 o  l4 P
回复 支持 反对

使用道具 举报

发表于 2011-6-25 13:07:50 | 显示全部楼层
都是些神马?
回复 支持 反对

使用道具 举报

发表于 2011-6-25 13:33:41 | 显示全部楼层
埋头挖矿中。。。。。。。。。
回复 支持 反对

使用道具 举报

发表于 2011-6-26 15:14:56 | 显示全部楼层
好东西啊。。。只是,刀具不是我的工作。。。顶起,不沉。。。
回复 支持 反对

使用道具 举报

 楼主| 发表于 2011-6-26 18:10:54 | 显示全部楼层
专业人士自有看法。
回复 支持 反对

使用道具 举报

发表于 2011-6-27 18:42:38 | 显示全部楼层
好东西啊,英文的,看着太费劲了
回复 支持 反对

使用道具 举报

发表于 2011-6-27 21:53:22 | 显示全部楼层
从网上查找这本书是Springer Series in Advanced Manufacturing丛书中的一本  Q1 d+ w6 z+ K& m0 W  t1 e) n
请问这套丛书共包含哪几本书
回复 支持 反对

使用道具 举报

您需要登录后才可以回帖 登录 | 注册会员

本版积分规则

小黑屋|手机版|Archiver|机械社区 ( 京ICP备10217105号-1,京ICP证050210号,浙公网安备33038202004372号 )

GMT+8, 2024-4-25 19:41 , Processed in 0.065557 second(s), 19 queries , Gzip On.

Powered by Discuz! X3.4 Licensed

© 2001-2017 Comsenz Inc.

快速回复 返回顶部 返回列表