GE FANUC 310i SERIES CONTROL8 a' f$ V( n" F) L/ w
PREPARATORY FUNCTION ) n7 u$ n: |; S: C3 r
The preparatory function codes are used to establish modes of operation. The following G codes are listed in their numeric sequence and also by group. In any group, one G code will cancel the other. The * denotes the default code when power is applied to the control.5 l j; g, J7 M a
) {3 h$ H5 Z8 ^* r2 m; @# K
Up to five G codes may be programmed on one line. If a line contains conflicting G codes, such as G00 G01, the last one read will control, but not in all cases.2 g3 c; t' T( }! A, C: K
CODE GROUP DESCRIPTION MODAL STD./OPT D' i- L! W! J6 x* K! K b0 v3 g( Z; U
CODE GROUP DESCRIPTION MODAL STD./OPT0 c- C2 H# }3 G% E% V* I! P# P
G00 01 Point to point positioning YES Standard d0 ~/ e/ ]8 O6 R9 H# r& b6 q1 f
G01* 01 Linear interpolation YES Standard7 U n. A: z0 G7 ^9 N- z8 q& o
G02 01 Circular interpolation-CW Arc YES Standard
( u4 I5 {8 u2 bG03 01 Circular interpolation-CCW Arc YES Standard
9 P' `" S6 o9 j! m2 R- [G04 00 Dwell NO Standard
" Y a3 Z$ [$ C B* k ?G09 00 Deceleration NO Standard+ y: b, \5 C" e% Z) W
G10 00 Programmable data input mode SOME Optional+ `3 w2 K Q& ]% b
G11 00 Programmable data input mode cancel YES Optional D& ], V: ?' P7 B7 C. G! ^
G10.6 00 Tool retract and recover NO Optional3 M: x' t* \) {# C/ x/ T
G12.1 26 Polar coordinate interpolation YES Optional4 k$ e. Y# H8 R% [2 i
G13.1* 26 Polar coordinate interpolation cancel YES Optional
0 v3 R9 n9 ^* P- kG18* 16 ZX plane selection YES Standard- w. {! U6 R/ V1 O
G19 16 YZ plane selection YES Standard
, S$ E. d" z% }6 O9 j5 ?G20 01 Turning cycle YES Standard9 z7 T6 r7 x* l7 \! G
G21 01 Threading cycle YES Standard
& [3 C$ K2 _4 Y8 bG24 01 Facing cycle YES Standard9 Y5 V+ ~2 J) C. _
G22 04 Stored stroke check ON YES Optional
0 z* X/ r) @8 W( f( D! H8 bG23 04 Stored stroke check Off YES Optional' C0 a9 M) S: e$ n( S7 m8 f( A
G27 00 Reference point return check NO Standard
6 ^1 y0 f" V6 x, N+ a2 K7 J" EG28 00 Reference point return NO Standard
~0 j+ n2 e. i# b" M. C6 lG29 00 Return from reference point NO Standard5 o. O0 s( d2 t+ t* h
G30 00 2nd, 3rd & 4th reference point return NO Optional2 c5 L5 r9 K) b# A; g1 J4 V
G30.1 00 Floating reference point return NO Optional
% M7 {2 D& f8 e9 m4 U6 q, SG31 00 Skip function NO Optional9 @' l) F- f" }: \" O
G33 01 Thread cutting, constant lead YES Standard
# Q+ ~% q8 ^# x0 JG40* 07 Tool nose radius compensation cancel YES Standard
' v$ n+ O* Q, N: ~2 GG41 07 Tool nose radius compensation Left YES Standard/ m0 {6 B% C6 f& s
G42 07 Tool nose radius compensation Right YES Standard' m; M+ E+ `7 B2 G
G43.7 23 Tool offset compensation (extended tool selection) YES Optional' [7 B& H( r) q, I4 a p6 o
G52 00 Local coordinate system shift YES 2 axis only
6 @, h6 ?9 d" s+ Y }G53 00 Machine coordinate system selection NO Standard! [# W. c H" S" f- W# p5 p
G54 14 Work coordinate system 1 selection YES Standard) F/ s% Q# Q2 |1 J6 A
G55 14 Work coordinate system 2 selection YES Standard
. p+ m8 T& R2 N$ a' D! `7 OCODE GROUP DESCRIPTION MODAL STD./OPT5 \5 U) k* R4 ]( Z _
G56 14 Work coordinate system 3 selection YES Standard
0 h m9 }; {- j# w3 bG57 14 Work coordinate system 4 selection YES Standard
4 \! a8 _6 i- u& `G58 14 Work coordinate system 5 selection YES Standard% V% Z) [& _9 @) q- g
G59 14 Work coordinate system 6 selection YES Standard
, V `: h1 t8 _3 i0 C+ EG61 15 Exact stop mode YES Standard5 l+ V2 \0 T+ ?5 }1 o2 ~
G62 15 Automatic corner override YES Standard, A: }9 h% m7 A( u7 V9 |0 w
G64* 15 Cutting mode YES Standard
: q; R0 _0 e! @! H9 vG65 00 Marco call NO Optional
% z! {( p1 e0 {0 ~+ x' qG66 12 Macro mode call A YES Optional. o% M# M: i4 I1 V
G67* 12 Macro mode call cancel YES Optional
2 H- k2 o! Q; e% f2 kG68 13 Balance cutting YES Optional
7 p' M% ]* S4 EG69 13 Cancel balance cutting YES Optional9 e" h; Y" N" Q# i4 V1 n
G70 06 Inch programming YES Standard! z1 Z; F" v+ e$ a5 I5 O- D7 d
G71 06 Metric programming YES Standard ?4 \ `4 u/ ~8 ?" x! r/ |
G72 00 Finishing cycle YES Optional6 `# i% I+ ]; {6 w4 D3 Z$ z; g
G73 00 Stock removal-turning YES Optional3 L6 e5 c4 `, W; o" ~: G
G74 00 Stock removal-facing YES Optional
9 k1 v8 x+ ~ s3 W. O$ RG75 00 Pattern repeat YES Optional
: A! A& W+ v) kG76 00 Peck drilling in Z axis YES Optional4 d) h$ N$ h7 ~5 e0 J' w
G77 00 Grooving-X axis YES Optional
. I" H5 V% @/ ]% T. ?G78 00 Threading cycle YES Optional
2 K* f0 b$ U$ X0 d% eG80* 09 Canned cycle cancel YES Optional
' R% g3 ^! G4 E. w& o p% |* ~" jG83 09 Face drilling cycle YES Optional
; U- e% a& |% k4 j$ b. vG84 09 Face tapping cycle YES Optional
& W6 A! a8 h/ I5 CG85 09 Face boring cycle YES Optional! {5 R0 L% X7 j$ ?9 R
G87 09 Side drilling cycle YES Optional% R* b S4 e( ~/ P' e1 U. [
G88 09 Side tapping cycle YES Optional
: b7 O. W( {! s5 f/ r( s' wG89 09 Side boring cycle YES Optional
u5 _) ?& i! H/ `G90* 03 Absolute dimension input YES Standard
, D& X4 p8 N7 `+ i2 I+ x- BG91 03 Incremental dimension input YES Standard
9 {% k+ l3 S! X( K" X7 W* Q. I7 yG92 00 Work change/ maximum table speed NO Standard5 w+ K2 K' _" t: p& S( B" q7 V k
G94 05 Inches (MM) per minute feedrate YES Standard2 H+ C8 p+ j# s" m. K& w4 n
G95* 05 Inches (MM) per table revolution YES Standard
8 @9 [ g U0 [% ] YG96 02 Constant surface speed YES Standard8 V' |1 T# |6 ]) j
G97* 02 Direct rpm YES Standard
: Y |1 M, ~, t# M3 TG98* 10 Canned cycle initial level return YES Optional
i2 p1 s9 n+ j$ b0 Q& `G99 10 Canned cycle R point level return YES Optional |