21世纪的技术世界,有巨大的进步是在电气工程方面,特别是能够精致地控制流动的电荷,使用日益缩小而又复杂的电路。这些电气进步仍然走在前面,宾夕法尼亚大学(University of Pennsylvania)的研究人员也在推动电路进步,他们采取的是不同的方法,就是用光取代电。 0 p& P1 g- K+ a0 l) f) Q
# D# h, c2 u6 K# K* C$ b “考察上个世纪成功的电子学,我总是不明白,为什么我们要局限于使用电流制作电路,”纳德 恩格海塔(Nader Engheta)说,他是宾夕法尼亚大学工程和应用科学学院电气和系统工程系教授。如果我们转向更短的波长,在电磁波谱中,比如采用光,我们就可以使制成的东西更小,更快,更高效。” + ?- P: H8 Y5 r) j! H
6 V2 p6 x! I3 v3 v 不同的排列和组合,使电子电路有不同的功能,范围很大,从简单的电灯开关到复杂的超级计算机都可以。反过来,这些电路的制备,需要以不同的方式排列电路元件,如电阻器(resistors),电感器(inductors)和电容器(capacitors),这些元件控制流动的电子,在电路中具有数学上精确的方式。电路和光学都遵循麦克斯韦方程(Maxwell's equations),这一基本公式描述电磁场的性能, 因此,恩格海塔设想用光制作电路,就不只想象的东西。 2005年,他和他的学生发表了一篇理论文章,概述了光电路元件如何工作。 4 m) W$ a/ ]2 C7 E0 L; o
7 B2 M& ]' X* l# n. [6 w6 g 现在,他和他的小组在宾夕法尼亚大学使这个梦想成为现实,他们创造了第一个实物演示的“集总”(lumped)光电路元件。这标志着一个里程碑,属于新兴科学和工程领域,恩格海塔称为“元子”(metatronics)。 1 [) O- q: t: O
% y' m( p/ X: C) _* t& U 这项研究发表在2012年1月29日一期的《自然材料》杂志上,题为《实验制成光学集总纳米电路采用红外波长》(Experimental realization of optical lumped nanocircuits at infrared wavelengths)。
$ F& k! n* `) Y$ y+ s2 X6 ]' ^% o1 [+ i
在电子产品中,“集总”名称是指一些元件,可以看作一个黑盒子,这种东西把给定的输入信号,转变为完全可以预测的输出信号,工程师不必担心内部的元件究竟如何工作,每次都可以这样设计电路。
% l5 @$ Z6 ]# |9 Q w9 i" e# A
6 G/ w) ~% O1 t# M9 q6 V9 h9 j “光学一直就有就自己的类似元件,这些东西比如透镜,波导和光栅,”恩格海塔说,“但它们从来没有进行集总。这些元件都比光的波长大得多,因为可以轻松制作的就是这些,都是在过去的日子。对于电子产品而言,集总电路元件总是远远小于操作波长,这些都是在无线电或微波频率范围。“ 9 }; R7 M& h }1 Z' e
* w: S8 ^" |6 O+ J/ ?- o! w5 c
! N" \% k! T R/ E1 r O( U' w 纳米技术目前已开辟了可能性,可以集中光电路元件,制成的结构尺寸可以达到纳米尺度。在这个实验案例中,这种结构是梳状长方形阵列的纳米棒,是用硅亚硝酸盐(silicon nitrite)制成。 & d# e# }8 v- S' b3 ]: i$ p
( {* Q% i5 K$ n; E- C “元”(meta)在元子(metatronics)中是指超材料,这是相对较新的研究领域,纳米尺度的模式和结构内嵌于一些材料,使它们可以操纵光波,这些方法以前是不可能的。在这里,纳米棒的横截面和它们之间的间隙,形成一种模式,可复制电阻器,电感器和电容器的功能,这是三个是最基本的电路元件,但都是在光的波长。
! S. d1 C, G8 f7 e
|1 i" v; L& O- w% W- Y “如果我们有光学版本的集总元件,那么,在我们的所有组件中,我们就可以进行实际设计,类似我们在电子产品中所做的设计,但现在的操作是使用光,”恩格海塔说。“我们制作电路可以采用光”。 % e x9 M% L! [2 C1 M0 O/ N5 V$ h
8 j3 F) c: [! ~& k- m 在他们的实验中,研究人员照亮这些纳米棒,采用光信号,这种光波属于中红外范围。然后,他们用光谱仪测量光波,因为光会穿过梳状纳米棒阵列。重复这一实验,使纳米棒采用9个不同组合的宽度和高度,研究人员发现,光“电流”和光“电压”会改变,原因在于光电阻、电感和电容,它们的不同参数会对应那些变化的尺寸。 / i/ S1 d: M" ~+ N6 p2 {/ {
+ k/ E" l' I$ N G) `9 o4 j5 S
“纳米棒截面的作用,相当于电感和电阻,纳米棒之间的气隙相当于电容,”恩格海塔说。 7 I- e8 j6 \8 p, @+ q4 y4 C' E
, N# T) U% H4 c- T) z$ [8 D 可以改变尺寸和纳米棒的制作材料,此外,这些光学电路的功能也可以改变,只需要改变光的方向,就会赋予元子电路一些配置,这是传统电子产品不可能的。
) A9 `. [- ?8 l4 a! |, j8 o" _( q/ |
这是因为,光波具有偏振;电场在光波中振荡,具有确定的空间方向。在元子电路中,是电场交互作用,被元件改变,因此,改变电场的方向,就像给电路重新布线一样。
& t5 R8 D* m s6 i
: Y! W! g9 _0 M" {2 e% F4 ~3 u# G “这种定位赋予我们两种不同的电路,这就是为什么我们称之为立体电路”,恩格海塔说。 “我们甚至可以让光波倾斜到达纳米棒,这样可以获得某些东西,这是常规电子产品就所没有的:这种电路既不是串联,也不是平行,而是混合了两者。” : _$ p6 v) _' u. t
! ?! Z, k) c! s$ ]( B7 ? 这一原则可以用于更高层次的复合状态,只需要使制成的纳米棒阵列具有三个维度。光信号到达这种结构的顶端,进入的电路会不同于到达侧面的光信号。因为采用这些基本光学元件,取得了更大的成功,恩格海塔和他的小组奠定了基础,可制作这种复杂的元子电路。 : V' t# q! A% k% ~+ D! z/ Z
* e- v" x2 U, [1 A% {2 q5 z& G “另一个原因是,成功制作电子产品,必须采用模块化,”他说。“我们可以制作无限数量的电路,这取决于我们如何排列不同的电路元件,就像我们可以把英文字母排列成不同的单词,句子和段落。 ' E. y" h4 ?7 T, }7 @. k2 }
8 C( X% q4 w3 `; p; S+ N8 J
“我们现在正在研究一些设计,用于更复杂的光学元件,”恩格海塔说。“我们在寻求制作这些新的字母,要逐个进行。” : o! `) j6 L* O- P2 a2 e/ u
3 _0 r v" ^) J( k
研究资金部分来自美国空军科研办公室(U.S. Air Force Office of Scientific Research)。 |