程学君 李应力 满艳茹 朱洪林9 {$ c9 a4 D+ e, }' T; ^
(大庆石化公司炼油厂)3 n9 F3 `# ^1 m, k1 S; ]
摘要:分析了炼油厂加氢裂化装置高压换热器频繁内漏的原因,表明螺栓预紧力不够是导致高压换热器频繁内漏的 主要原因;提出应用预紧碟簧来补偿螺栓预紧力。结果表明,预紧碟簧能够很好地补偿由于系统波动而导致的螺栓预紧 力松弛,从而彻底解决加氢高压换热器的内漏问题。
+ I6 q9 G8 T1 E6 g, x. t. k2 P! E
( n5 h4 j* B) S0 `2 h% U) @ 大庆石化公司炼油厂260 kt/年加氢裂化装置是 我国自行设计建造的第一套加氢裂化装置。其高压换 热器为立式中心管式换热器,规格型号为?800mm× 15 000mm,管束材质为1Cr18Ni9T,i规格为?19mm× 2 mm,管程介质为生成油、氢气,壳程介质为催化柴油、氢气。该换热器在2004年4月和8月先后2 次出现内漏,因此解决好该套装置的换热器内漏问 题,对装置的安全平稳生产具有重大意义。 L; e+ ^+ c/ N
1 换热器工作原理9 k8 w$ V. {0 ^2 l- I+ y$ g+ n$ f

/ J" m8 e' W5 p6 U4 P) m 该换热器为立式中心管式换热器,其结构如图1 所示。# ]. ?6 n- _2 Y: Y% R
管程介质(生成油、氢气)从三通套管侧面管 程入口进入,在管束内与壳程介质(催化柴油、氢 气)换热后到达管束底部浮头处,然后进入管束中 心的中心管,通过中心管返回到换热器顶部的管程出 口。壳程介质从三通套管侧面的壳程入口进入换热器 壳体与保温套之间的夹套(防止换热器外表面温度 过高)到达换热器底部浮头与保温套处折回,进入 保温套内侧与管程介质进行充分换热后回到换热器顶 部的壳程出口。$ Q: e5 d# R6 K$ O9 I+ v0 j
2 内漏原因分析
+ H Z1 v- s A- _1 \ 对于高压换热器的内漏,主要有以下几种情况:
" o- ^* A6 {9 R) | (1)管束换热管与固定管板的结合处因为腐蚀 或者焊接质量存在问题发生泄漏。
6 M! v- t$ m, F( j+ T (2)换热管束当中的某一根或几根因为腐蚀或 者存在其他缺陷而穿孔造成泄漏。
: t! ?9 |8 }$ D: Y& Y (3)固定管板存在裂纹造成泄漏。
; k% o: D% P; f (4)换热器浮头密封失效而泄漏。, G4 o, z5 E% T
(5)管板与大盖连接密封失效而泄漏。在换热 器发生2次泄漏之后,将换热器芯子抽出进行试压并 未发现有泄漏之处,即排出了前3种情况的存在,因此造成换热器泄漏的原因是换热器浮头密封失效和管 板与大盖连接密封失效。0 H4 v" Q/ p3 d
研究表明,密封失效往往与螺栓预紧力、密封面 状态、使用工况、垫片等因素有关。在2次换热器发 生泄漏后均对换热器密封面进行了检查,并未发现密 封面存在问题。浮头和管板与大盖连接处垫片均为齿 形复合垫(规格型号均为?678/662 mm×4 mm, 0Cr18Ni9Ti),经检验合格,未发现垫片存在缺陷。 因此,密封发生失效的因素是由于螺栓预紧力不够或 者外界条件发生变化时螺栓没有对所发生的变化及时 给以补偿。
0 v1 ^9 C* l; O' K 经过分析作者认为有以下3个方面造成内漏:6 p. O1 \- S* p6 M! g
(1)螺栓预紧力不够[1]。为保证密封系统紧密 和安全可靠地长周期运行,垫片表面必须有足够的密 封比压。过小的螺栓预紧力使受压后垫片表面的残余 压紧应力达不到工作密封比压,从而导致密封面泄 漏。
# D \- R+ M. N9 j) s (2)温度变化。随着原料油(催化柴油)组分 和进料量的变化,反应器出口温度波动,换热器的工 作温度在不断变化。而在高温和温度波动的工况下, 螺栓容易产生热变形,导致垫片松弛,密封面发生泄 漏。8 e. j$ E& X' ?9 J) U0 q" a
(3)压力升降。在操作过程中系统压力并不是 恒定不变的,而是在一定的范围内波动,特别是在装 置处于非正常生产的情况下,压力波动幅度相当大, 有可能超出工作压力1~2 MPa,也有可能紧急泄压 到2~3MPa。压力在波动过程中,势必造成螺栓的 不断伸缩,以补偿压力升降导致的密封比压的变化。 在压力不断变化过程中,螺栓的疲劳强度降低,相应 的补偿压力达不到密封要求,最终造成密封失效,换热器内漏。" X' u% W4 m8 M% f
根据当时的操作记录显示,在2004年4月换热 器内漏前由于炼油厂瓦斯系统管网压力的波动造成加 热炉出口温度急剧下降,反应器出口温度相应下降, 最终导致换热器温度下降。在2004年8月换热器内 漏前由于原料带水导致反应器大盖造成泄漏,车间决 定降低原料进料量、降低系统压力后,对反应器大盖 进行处理。由此可见,高压换热器的2次内漏均与操 作波动密切相关。
) H& W$ P1 h3 g4 j* p' ?; [ 3 预紧碟簧的应用
0 K" M+ z" q2 n& g8 N$ ` 针对造成高压换热器泄漏的原因,采取如下措 施:
' y; i9 w- _1 G (1)螺栓的选择[2]。为减少螺栓应力集中部位,在加工完毕后,对螺栓采取固溶等热处理措施,消除 螺栓内部的残余应力,提高螺栓的抗疲劳强度。( _% Q$ y! [* Z/ g, Y" v2 V9 L1 e- W
(2)在回装浮头和大盖时,螺栓一定要均匀、 对称拧紧,并且要有足够的预紧力。
8 v, I0 \0 i( l6 s) O& ]9 I (3)工艺操作平稳,尽可能减少温度和压力上的波动。
5 U' o) n+ k& I2 i2 R* ]" U (4)在浮头和大盖螺栓两侧安装高温预紧碟簧, 使换热器浮头和大盖在温度、压力的频繁波动下,预紧碟簧有足够的变形来补偿因此而引起的预紧力的改变,防止螺栓和垫片失效。
' ]. w6 b, @' o$ K7 m* \ 碟簧[3]是采用特殊材质冲制而成的,可以在很小 的变形下提供足够的预紧力载荷,从而有效地减少密 封失效的风险,其外形如图2所示。其中D为外径, d为内径, D0为中性径(中性径是指碟簧截面翻转 点所在圆的直径, D0=(D-d) /ln(D /d)), t为厚度, H0为单片碟簧的自由高度, h0为碟簧压平时变 形量的计算值(H0-t)。6 ?, P L8 x& V' k

a% x2 ]! j) i 当它受到沿周边均匀分布的轴向力F时,内锥 高度H0变小,相应地产生轴向变形λ。这种弹簧具 有变刚度的特性,当D、D0和t一定时,随着内锥高 度H0与簧片厚度t的比值不同,其特性曲线也不相 同,如图3所示。当H0/t≈1·5时,曲线的中间部分 接近于水平,即当H0/t=1·5左右时碟簧所受载荷基 本恒定,也就是说依靠碟簧变形而产生的密封比压不 因外界因素变化而变化。 M* z) E/ F2 ?. y8 w" Y0 X
$ N5 k" D, k5 R- i8 v; ?! C
当螺栓拧紧时,吸收机械能转化成位能(势能) 储存在碟簧中,当设备由于温度变化、压力变化或 机械振动导致螺栓的预紧力松弛时,释放位能(势 能)转化成机械能,对螺栓的预紧力进行补偿,使 螺栓的预紧力始终保持在垫片密封所需要的预紧力范 围之内。
4 |# c ^# t' ]4 h& N j 4 使用效果及注意事项5 F; V; ?( X3 k7 t% @, K
在2004年8月的检修过程中,对受温度和压力 变化较大的浮头和大盖螺栓一侧安装高温预紧碟簧。 截至到2007年7月检修,经过一个周期的运转,没 有出现因压力和温度波动等因素造成的高压换热器泄 漏,表明高温预紧碟簧对高压换热器螺栓的温度、压 力补偿效果明显,在防止螺栓和垫片失效方面起到了 积极作用。' b; S+ f u9 t( b& x
正确选用预紧碟簧对控制泄漏至关重要,只有 碟簧工作在恒定载荷区域,即有效补偿区域,碟簧 才能真正发挥其补偿作用。如果错误地选用压力过 小的预紧碟簧,在螺栓预紧力松弛30%后,将无法 提供密封所需的最小预紧力,效果等同于没有使用 碟簧。如果错误地选用压力过大的预紧碟簧,将超 过垫片材料的弹性极限产生永久变形,效果比不使 用碟簧还差。
! [& V! |: m+ v* ~: j 5 结束语
* f8 o) @6 w& U' B$ S; R W# q 通过对高压换热器内漏原因的分析,找到了造成换热器内漏的原因,并通过安装高温预紧碟簧,解决了换热器的内漏问题,减少因换热器内漏带来的临时停工次数,节省了检修费用,为装置的长周期安全平稳运行提供了有利保障。( w' z' O4 O! h1 Q& w: E
|