01 3+2定位加工 在一个三轴铣削程序执行时,使用五轴机床的两个旋转轴将切削刀具固定在一个倾斜的位置,3+2加工技术的名字也由此而来,这也叫做定位五轴机床,因为第四个轴和第五个轴是用来确定在固定位置上刀具的方向,而不是在加工过程中连续不断。 , Z; Q- m6 J7 H& P
& _) s( H o1 ~9 L: c
3+2定位加工的原理实质上就是三轴功能在特定角度(即“定位”)上的实现,简单地说,就是当机床转了角度以后,还是以普通三轴的方式进行加工。 8 e% d- t v: v9 {% i% c
02 5轴联动加工 根据ISO的规定,在描述数控机床的运动时,采用左手直角坐标系;其中平行于主轴的坐标轴定义为Z轴,绕X、Y、Z轴的旋转坐标分别为A、B、C。通常五轴联动是指X、Y、Z、A、B中任意5个坐标的线性插补运动。 0 S$ a% R; h0 \6 |( @
1 w& {+ a$ \2 a/ m& ]( [9 O
03 3+2定位与5轴联动的区别 3+2定位加工与5轴联动加工适用的行业对象不同,5轴联动加工适合曲面加工,3+2定位加工适合于平面加工。
/ P; }. h; Q3 T6 z. t# h: a
3+2定位加工的优势: 1)可以使用更短的,刚性更高的切削刀具。 2)刀具可以与表面形成一定的角度,主轴头可以伸得更低,离工件更近。 3)刀具移动距离更短,程序代码更少。 v: A9 r* ~5 Z
3+2定位加工的局限性: 3+2定位加工通常被认为是设置一个对主轴的常量角度。复杂工件可能要求许多个倾斜视图以覆盖整个工件,但这样会导致刀具路径重叠,从而增加加工时间。 / a, {. g! P" a. y
5轴联动加工的优势:
. i+ x/ d, O/ Z' }, ?2 C- x
1)加工时无需特殊夹具,降低了夹具的成本,避免了多次装夹,提高模具加工精度。 2)减少夹具的使用数量。 3)加工中省去许多特殊刀具,从而降低了刀具成本。 4)在加工中能增加刀具的有效切削刃长度,减小切削力,提高刀具使用寿命,降低成本。 8 u* q/ j r: |3 V7 b `9 i, z
5轴联动的局限性: h# D4 v2 Z5 L$ }) \0 p
1)相比3+2定位,其主轴刚性要差一些。 2)有些情况不宜采用五轴方案,比如刀具太短,或刀柄太大,使任何倾斜角的工况下都不能避免振动。 3)相比3轴机床,加工精度误差大。 , O* w' l; ~! @8 V
4 G: \% ^$ y* A) H0 Z& ^
04 真五轴与假五轴 五轴就是有RTCP功能。能根据主轴的摆长及旋转台的机械坐标进行自动换算。在编制程序时,只需要考虑工件的坐标,不需要考虑主轴的摆长及旋转台的位置。 , y% l4 D6 g* b& { [
是否是真五轴,不是看五个轴是否联动,假五轴也可五轴联动。主轴要是有RTCP真五轴的算法。就是做分度加工,有RTCP功能的真五轴只要设置一个坐标系,只需要一次对刀设坐标。而假五轴则麻烦很多。
, H3 Z: N- q) l
0 U+ f/ |6 X! x- V3 u! P5 _
没有RCTP功能的情况 5 h( V8 ~5 q# c6 _/ b. E+ g8 ^9 I
) v: G! c% ?9 h8 D" B: |2 }, Y6 O& {
有RCTP功能的情况 $ F& D. N; z' o5 C- C( A. S
拥有RTCP功能的数控系统,可以直接使用刀尖编程,无需考虑旋转轴中心距离。应用RTCP模式后,编程5坐标加工就可以直接针对刀具刀尖而不是旋转主轴头的中心,因此编程就会变得简单、高效很多。
2 ?, D( l9 ?. }* v8 R
4 @& x# o# c0 G0 {7 n- y
从图中我们可以看到,对于双转台假五轴,需要设置多次坐标,达到分度加工的目的。但如果是摆头式五轴,则分度加工也不可能完成,因为摆头五轴,在向下加工的时候,不是单独的Z运动,是Z与X或Y一起运动。此时的假五轴,编程将十分麻烦,调试更加困难,此时也不能使用三轴的G51偏移功能。
$ @; f; E0 ^: i3 H3 v- o0 { 6 C) t4 C( o- o- H
|