找回密码
 注册会员

QQ登录

只需一步,快速开始

搜索
查看: 3500|回复: 7

一个固体力学的仿真计算

[复制链接]
发表于 2013-12-19 19:22:36 | 显示全部楼层 |阅读模式
本帖最后由 泼墨 于 2013-12-19 19:24 编辑 8 J6 K6 [, j3 N2 j( l4 G3 Z

( [6 u; V$ w) o! N' m, M3 xTwo metallic beams a  and  c are fixed to a block as shown below. Both beam a  and beam  c  remain perpendicular
1 J  D: a+ d4 H2 M4 }$ Q! T1 h: Gto block  b  at the connecting points. Beam  a  is attached to a wall and it remains perpendicular to the wall at the ' U8 ~; a2 Z* U) X: z  t
other end. Beam c is passed through a hole in the wall. Direction of the hole is perpendicular to the wall surface.   0 x$ }( Q0 W; w9 I4 @! n& q
Related dimensions are shown on the diagram. The diagram is in millimeter. Beams  a  and c  have a circular
1 V2 l' W' ^  X# [# _+ ]  }cross-section with a diameter of 0.7mm. The Young’s modulus is 70 GPa. Both beam a  and beam  c  are initially - r+ U* D9 q/ a3 K! o/ ~0 p
straight.  " }, x: o! H0 W3 L- |7 p! n  Z8 U
Neglect gravity. Assume a perfect linear relationship between stress  and strain for beams  a  and c . Neglect axial
9 g; j4 e( O3 v( z+ `' Qelongation or compression of beams  a  and  c .  
3 V( L3 \- |! M' _; `/ ^# ^Using elliptic integrals, derive relevant entities to predict the final shapes of beams a  and  c  when beam c  is pulled
; ^6 b9 a, X  M* W* jfor 10 mm in the indicated direction.   ! D' q, q. s# |5 ]
Use Matlab to implement your derivations and plot the deflected shapes of beams a  and  c  in a figure. You should # }; f2 I5 ~5 K: `& r8 J! t3 {
also plot block  b at the desired position. Please make sure your plot has a correct X-Y scale so that the figure
. N2 ?# [* J" m( y7 hlooks realistic. ' b- u  y( g2 Y3 E+ n  b+ s% e
Please also compare how close the deflected shapes of beams  a  and  c  are to circular arcs, by drawing circular arcs
! t5 M3 G% d* L! ^+ X. Iwhich pass through the two ends of beams a  and c . The circular arcs should also be perpendicular to the wall 2 t  U* M& B* \7 }! ^0 ]; C3 ]3 R: h
surface at one end. 0 O! A$ r2 u% l  D3 |: v, W! i2 c$ m

本帖子中包含更多资源

您需要 登录 才可以下载或查看,没有账号?注册会员

×
回复

使用道具 举报

 楼主| 发表于 2013-12-19 19:25:39 | 显示全部楼层
大概有10个以上的未知数和方程,但是含有数个超越方程,用matlab做仿真一直没出来  `" i2 ?$ g4 G7 N( x: B! ?+ C
有大侠有好的方法么。。。。。
发表于 2013-12-19 20:42:31 | 显示全部楼层
这个没有人会回的,楼主放弃吧

点评

unmark 外语小白表示‘亚历山大’  发表于 2013-12-20 10:35
mark一下,过几年回来再看看会不会。  发表于 2013-12-19 20:47
发表于 2013-12-19 21:08:16 | 显示全部楼层
茉莉素馨 发表于 2013-12-19 20:42
: `- o# a$ I$ q/ @* h% Z这个没有人会回的,楼主放弃吧
7 _/ i5 w& G; H& X$ V
同马克- b  P9 G, i4 ~; N9 b7 P
发表于 2013-12-19 23:11:57 | 显示全部楼层
楼主这是在国外深造啊?
发表于 2013-12-19 23:39:19 | 显示全部楼层
老实说,我不会做,看了下题目,估计了下,估摸着是这种形状,哈哈& X5 p, [3 i7 k' o1 i

' B8 T5 z0 D6 M" v4 ?应该B的重力影响比较大吧
& a) E$ ?; n# l4 E+ N2 e0 z3 M* Q4 p" d

本帖子中包含更多资源

您需要 登录 才可以下载或查看,没有账号?注册会员

×

点评

题目里说了不考虑B的重量  发表于 2013-12-20 12:04
发表于 2013-12-20 16:38:24 | 显示全部楼层
求变形吗?可以使用有限元?

点评

是可以 主要是老师在教这一块 要求我们用椭圆积分  发表于 2013-12-20 19:25
发表于 2013-12-23 22:38:38 | 显示全部楼层
B看成刚性体! V4 _! b" X5 ?* w0 H
或略a和c的轴向变形( h* [. h' U4 E$ E
根据挠度方程联列a和c的变形方程
您需要登录后才可以回帖 登录 | 注册会员

本版积分规则

Archiver|手机版|小黑屋|机械社区 ( 京ICP备10217105号-1,京ICP证050210号,浙公网安备33038202004372号 )

GMT+8, 2025-8-29 05:16 , Processed in 0.074464 second(s), 17 queries , Gzip On.

Powered by Discuz! X3.5 Licensed

© 2001-2025 Discuz! Team.

快速回复 返回顶部 返回列表