找回密码
 注册会员

QQ登录

只需一步,快速开始

搜索
查看: 3432|回复: 7

一个固体力学的仿真计算

[复制链接]
发表于 2013-12-19 19:22:36 | 显示全部楼层 |阅读模式
本帖最后由 泼墨 于 2013-12-19 19:24 编辑 ) e6 |1 w; k2 E* g
1 a7 I/ c. X: h/ z; d
Two metallic beams a  and  c are fixed to a block as shown below. Both beam a  and beam  c  remain perpendicular
& W4 n% I; w, C) }+ c; |: {8 Rto block  b  at the connecting points. Beam  a  is attached to a wall and it remains perpendicular to the wall at the
9 i8 z" C& d  e! B% Bother end. Beam c is passed through a hole in the wall. Direction of the hole is perpendicular to the wall surface.   
( v9 F' N! t% e+ R8 O% wRelated dimensions are shown on the diagram. The diagram is in millimeter. Beams  a  and c  have a circular 2 x+ U4 h8 @& z
cross-section with a diameter of 0.7mm. The Young’s modulus is 70 GPa. Both beam a  and beam  c  are initially
/ G4 _  C) b* @, V  c! A5 B6 @straight.  
7 f( J2 n: A7 n# x& F$ W5 I& `3 U1 `Neglect gravity. Assume a perfect linear relationship between stress  and strain for beams  a  and c . Neglect axial 0 Z' L3 E' D0 l# u; w
elongation or compression of beams  a  and  c .  
) |% }  q6 t, i$ ~( uUsing elliptic integrals, derive relevant entities to predict the final shapes of beams a  and  c  when beam c  is pulled 3 P3 n3 e) v' U, e& l6 }
for 10 mm in the indicated direction.   
0 v7 y$ @9 u6 ~% s0 e+ KUse Matlab to implement your derivations and plot the deflected shapes of beams a  and  c  in a figure. You should
' e& e; A( {. o5 X) N: {also plot block  b at the desired position. Please make sure your plot has a correct X-Y scale so that the figure ! k, ?$ }( a) Y4 E( Y
looks realistic.
! H% u+ y- x  |: m6 m" YPlease also compare how close the deflected shapes of beams  a  and  c  are to circular arcs, by drawing circular arcs
  }3 X' h8 f8 ?- h1 z  nwhich pass through the two ends of beams a  and c . The circular arcs should also be perpendicular to the wall
- P/ C) k8 D- l' |' Esurface at one end.
8 O& F. z( x' M9 C" F

本帖子中包含更多资源

您需要 登录 才可以下载或查看,没有账号?注册会员

×
回复

使用道具 举报

 楼主| 发表于 2013-12-19 19:25:39 | 显示全部楼层
大概有10个以上的未知数和方程,但是含有数个超越方程,用matlab做仿真一直没出来
* Q9 t7 Z# a" @$ ?) K1 N- ^有大侠有好的方法么。。。。。
发表于 2013-12-19 20:42:31 | 显示全部楼层
这个没有人会回的,楼主放弃吧

点评

unmark 外语小白表示‘亚历山大’  发表于 2013-12-20 10:35
mark一下,过几年回来再看看会不会。  发表于 2013-12-19 20:47
发表于 2013-12-19 21:08:16 | 显示全部楼层
茉莉素馨 发表于 2013-12-19 20:42   `0 J! I6 ]- d* H% H, [
这个没有人会回的,楼主放弃吧

+ f, \; D. @- A; Y1 k+ p同马克6 A! |+ g9 {" ~. v2 C# ^" w
发表于 2013-12-19 23:11:57 | 显示全部楼层
楼主这是在国外深造啊?
发表于 2013-12-19 23:39:19 | 显示全部楼层
老实说,我不会做,看了下题目,估计了下,估摸着是这种形状,哈哈
* X2 w+ M' X1 |0 f) J! m2 `9 O
. s- N& M' z/ R# Y0 ~' Y应该B的重力影响比较大吧8 D8 }9 R* y6 Q7 n

7 D0 p* Q% C, \" H# I

本帖子中包含更多资源

您需要 登录 才可以下载或查看,没有账号?注册会员

×

点评

题目里说了不考虑B的重量  发表于 2013-12-20 12:04
发表于 2013-12-20 16:38:24 | 显示全部楼层
求变形吗?可以使用有限元?

点评

是可以 主要是老师在教这一块 要求我们用椭圆积分  发表于 2013-12-20 19:25
发表于 2013-12-23 22:38:38 | 显示全部楼层
B看成刚性体
7 }" N: H) l" \9 G或略a和c的轴向变形* C# f2 C# J: y- o
根据挠度方程联列a和c的变形方程
您需要登录后才可以回帖 登录 | 注册会员

本版积分规则

Archiver|手机版|小黑屋|机械社区 ( 京ICP备10217105号-1,京ICP证050210号,浙公网安备33038202004372号 )

GMT+8, 2025-7-14 17:02 , Processed in 0.073193 second(s), 17 queries , Gzip On.

Powered by Discuz! X3.5 Licensed

© 2001-2025 Discuz! Team.

快速回复 返回顶部 返回列表