找回密码
 注册会员

QQ登录

只需一步,快速开始

搜索
查看: 1344|回复: 0

英文全书下载 Viscoelastic Materials. Roderic Lakes 2009 《粘弹性材料》

[复制链接]
发表于 2015-1-9 22:34:06 | 显示全部楼层 |阅读模式
本帖最后由 陈小黑 于 2015-1-9 22:37 编辑
! E% l6 a" y2 w* Y/ ?6 q9 p' j
+ t  t, g: j* x# X4 I; n Viscoelastic Materials Roderic Lakes 2009 Part 1-2.rar (4.42 MB, 下载次数: 6)
& z3 k$ c: Q, Z8 ~& Y7 W2 v
, V: l+ t& I7 `- d8 {1 L& Y% M Viscoelastic Materials Roderic Lakes 2009 Part 2-2.rar (3.39 MB, 下载次数: 6)
' |. n' F) E/ h! S" b
! \* S. u% e. A1 J5 k目录2 n( G. e: y4 i7 {
9 n% s% c9 ^( d% K  w) T: `: O
Contents- j3 z- a7 ]1 K; Q# ^
2 C5 o1 r( J% ^9 r- L
Preface page xvii
5 Z( o+ h6 p! ?$ [& ]2 n8 o1 Introduction: Phenomena . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 t' L; u) {" n+ `5 x6 n' A
1.1 Viscoelastic Phenomena 16 ?& }4 [, E. P+ Y
1.2 Motivations for Studying Viscoelasticity 3
1 b+ w4 g3 V5 p2 z& ^; z3 N3 y1.3 Transient Properties: Creep and Relaxation 3* E  p3 i, k6 F9 ~
1.3.1 Viscoelastic Functions J (t), E(t) 3
3 H4 u  i2 J' o0 A& v1.3.2 Solids and Liquids 7
. s' _( ~6 }. X, |1.4 Dynamic Response to Sinusoidal Load: E∗, tanδ 8
7 ^/ J9 N/ l: ^0 a1 n5 {1.5 Demonstration of Viscoelastic Behavior 10: W- W' F7 p3 ]4 k
1.6 Historical Aspects 10
, N4 A  m& ~: Z8 y4 N1.7 Summary 11
" Q' X9 J  x/ P1 b3 ~: V# ?7 i1.8 Examples 11
( d; h- W- x! {! ~, ^1.9 Problems 128 V7 ^$ `9 @3 m/ i
Bibliography 12- @! K2 R5 w" @% `, ?4 T5 B

! T) k/ F$ d1 V. v, C$ P) p6 k% I8 o  w! j* H1 ^
* M* f* l( B* Q

2 L6 N# U" x: u  F
$ o9 ^8 G7 ~8 Q' n* _+ e3 f6 M! W. U. D9 v! g% e. M
2 Constitutive Relations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
5 y0 t/ P% ^6 t! U2.1 Introduction 14! P7 a- r, o3 S" p# b3 O. R
2.2 Prediction of the Response of Linearly Viscoelastic Materials 145 g: [3 r  u8 l+ ]+ B- ]; p! p" v
2.2.1 Prediction of Recovery from Relaxation E(t) 14$ S- n* ~3 X( w7 ?
2.2.2 Prediction of Response to Arbitrary Strain History 150 |1 d( z% j  K" v3 h
2.3 Restrictions on the Viscoelastic Functions 17. r$ V% p- E- Z: s6 O3 k
2.3.1 Roles of Energy and Passivity 17
& h4 n: Y: j7 G2.3.2 Fading Memory 18
. C9 N) C6 R! E+ A& n3 F) p% X: _; Z2.4 Relation between Creep and Relaxation 190 T1 V) ~! |2 B  B
2.4.1 Analysis by Laplace Transforms: J (t) ↔ E(t) 19
! e+ b: t1 u' y. x2.4.2 Analysis by Direct Construction: J (t) ↔ E(t) 20
! P7 f/ t$ S$ z* l' |2.5 Stress versus Strain for Constant Strain Rate 201 v4 H6 X7 B$ r( l5 j
2.6 Particular Creep and Relaxation Functions 21
2 M: ?* Y: v' O3 |1 h# L2.6.1 Exponentials and Mechanical Models 21
( O4 I; G2 O8 K9 t8 {" s2.6.2 Exponentials and Internal Causal Variables 267 U0 I) o' O2 P5 U. B/ r% K8 ~( }' c: {
2.6.3 Fractional Derivatives 27' t" S" q& \- p4 i! R3 D  g% A
2.6.4 Power-Law Behavior 28
( }& W( v/ b& z' c8 p& v4 R2.6.5 Stretched Exponential 29
8 f; h8 W" u8 |# A7 R9 n! Z' n2.6.6 Logarithmic Creep; Kuhn Model 29
% L( {, `# s1 i6 D# e/ m2.6.7 Distinguishing among Viscoelastic Functions 302 u& V/ [9 m- ~. g
2.7 Effect of Temperature 30
) x" p" d, }( l6 L2 N2.8 Three-Dimensional Linear Constitutive Equation 33
$ I8 W! z- l9 ~& _2.9 Aging Materials 350 }1 q2 k  N# ^
2.10 Dielectric and Other Forms of Relaxation 35
2 w3 N0 H' ~1 Y0 y# y+ s) ~2.11 Adaptive and “Smart” Materials 36: i3 C. y8 G- K* I
2.12 Effect of Nonlinearity 374 d8 p' [4 z: J9 m* n2 r0 y* H) ^
2.12.1 Constitutive Equations 37/ W; t# F. p! [9 D. t! }$ B
2.12.2 Creep–Relaxation Interrelation: Nonlinear 40" ^! ~. ?$ o! T& L6 H) K
2.13 Summary 43
3 w8 U- O: Z1 z1 D2 V/ Y2.14 Examples 434 ]" {( s1 a; O1 i: _: P+ H* `
2.15 Problems 51
& P+ s& M5 P, ~) @+ zBibliography 52
1 b3 {0 e& t5 [; Q' a7 f
' C; G# ~1 \1 j. L2 d) T( ~5 x& e3 D

# ^# W; b! U$ |0 d" W+ q- k, l, O
' C; U; v9 y  F7 R! ]3 Dynamic Behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
$ S! b, x6 d. i) y4 J3.1 Introduction and Rationale 55
$ U* W% [6 I. O: Q3.2 The Linear Dynamic Response Functions E∗, tanδ 56
5 g2 _2 N9 b+ Q! i% s' S6 z3 A0 [# q3.2.1 Response to Sinusoidal Input 57
6 M4 J9 [6 O6 U& A, e* T) h2 P" ?3.2.2 Dynamic Stress–Strain Relation 590 k4 O; x& o  s8 v+ m" Z
3.2.3 Standard Linear Solid 625 T  C& Y2 L1 U, z9 F
3.3 Kramers–Kronig Relations 63, Y2 T4 ]# T. F) x% U3 ^
3.4 Energy Storage and Dissipation 65: y" ^  S1 h' {! f9 i3 P# F
3.5 Resonance of Structural Members 67" K( R2 [# K1 H; q# n# A' L
3.5.1 Resonance, Lumped System 67
% l; Y6 |+ k$ c9 {3.5.2 Resonance, Distributed System 712 N  V* Q/ i) [- f2 r* ?8 }
3.6 Decay of Resonant Vibration 74+ }. v* [1 r, L" b+ I2 m; o' P
3.7 Wave Propagation and Attenuation 77. p! @' H) I6 S
3.8 Measures of Damping 79
2 C' h2 N  T1 s* l5 z3.9 Nonlinear Materials 79. H7 ^( S0 A. y) G& K, P7 ~, S
3.10 Summary 81# ]- a0 {% _5 l7 O& k
3.11 Examples 81
0 z$ I8 v3 a6 M. X3 d& i3.12 Problems 88' j4 ^' q7 j2 J" R8 {7 S
Bibliography 898 T1 K3 C4 R: P* n( e1 v! _
" D4 ?- J" ~! P  N0 y; u

  a. h1 S' F# g1 C" g% M7 D; h, u& j( X: X6 F
4 Conceptual Structure of Linear Viscoelasticity . . . . . . . . . . . . . . . 91& [! a, k& g' B' t: _
4.1 Introduction 913 t8 V" j4 D$ h8 q9 Y
4.2 Spectra in Linear Viscoelasticity 92+ J- n' ?4 {+ {0 K4 A9 i/ E
4.2.1 Definitions H(τ ), L(τ ) and Exact Interrelations 92% w% L1 V, @/ Z) v
4.2.2 Particular Spectra 93
! h) @. d9 t& E+ N8 u6 ?4.3 Approximate Interrelations of Viscoelastic Functions 950 w, p/ x& a4 U& ~( i/ I0 `
4.3.1 Interrelations Involving the Spectra 95
9 b+ Y  h* X) M/ `7 H* B4.3.2 Interrelations Involving Measurable Functions 983 \) ?5 ]( \' N* D2 Q) d" b: o
4.3.3 Summary, Approximate Relations 1016 ?  h2 W( o% k! c2 e% T6 X
4.4 Conceptual Organization of the Viscoelastic Functions 101
; ^6 N1 W6 ~2 v0 p( U4.5 Summary 104* b/ u- ]  X3 @* E
4.6 Examples 1046 z9 \: P# Y0 ?
4.7 Problems 109
" Z; I' O; V; c. x0 k# p0 c2 bBibliography 1092 m, m1 u0 l' m0 j/ e% x
0 p: V; N; `+ I  N& n, l2 `/ E0 `3 f
& X& m; ~7 N$ ]  q8 j2 B
* b+ N4 H3 F2 D8 X  }# a8 E
5 Viscoelastic Stress and Deformation Analysis . . . . . . . . . . . . . . . 111
: a- z: l7 A: A* }" @2 K5.1 Introduction 111# \- X8 A  Z1 s# S/ t  u1 t! [5 j
5.2 Three-Dimensional Constitutive Equation 111
7 {0 H9 W8 t& Y/ r7 P- R/ E5.3 Pure Bending by Direct Construction 112
' f. Y+ S- T" J, D5.4 Correspondence Principle 1140 X! h7 _. a7 H- a9 [" _
5.5 Pure Bending by Correspondence 116
" Q; k6 H  S' l9 d# F: |5.6 Correspondence Principle in Three Dimensions 1162 U4 L5 M% {3 c
5.6.1 Constitutive Equations 116# r0 o" L: ^$ `. f% X+ Z# V; z4 c. _. h
5.6.2 Rigid Indenter on a Semi-Infinite Solid 117
  v1 o$ [+ D5 i* L5.6.3 Viscoelastic Rod Held at Constant Extension 1197 R( L$ L# r3 H% ]5 n9 z
5.6.4 Stress Concentration 119
1 Y  ~7 Y6 f$ Y. k2 N1 v5.6.5 Saint Venant’s Principle 1200 M- `; M5 a, n, l: i6 A3 }$ g1 X
5.7 Poisson’s Ratio ν(t) 121
; G5 X  V* C+ ~$ \. ]3 K5.7.1 Relaxation in Tension 121
; U9 @9 [2 I+ a$ N5.7.2 Creep in Tension 123; g0 w. o: @! z+ ?3 t8 G9 H
5.8 Dynamic Problems: Effects of Inertia 124% e- M, c7 r* h" U8 _" ]2 h
5.8.1 Longitudinal Vibration and Waves in a Rod 124
. j1 ^- E, n# I! O" D& ~/ t5 z- C5.8.2 Torsional Waves and Vibration in a Rod 125  |4 O& z, T2 M& Y' a  {* m8 P
5.8.3 Bending Waves and Vibration 128
5 \/ h- Z' h0 w$ j* [; O; `8 \0 @5.8.4 Waves in Three Dimensions 129
( Y4 ]& T- c4 @' M  }' ~2 r5.9 Noncorrespondence Problems 131
2 Z9 {; [# R3 a. N& t5.9.1 Solution by Direct Construction: Example 131
6 Y" `% s0 Y* v. ]$ p2 E5.9.2 A Generalized Correspondence Principle 132$ |8 [( O5 x0 `# c
5.9.3 Contact Problems 132
0 S" f$ H  q- J7 U/ c5.10 Bending in Nonlinear Viscoelasticity 133$ m( X1 p( p0 ]5 }# ]
5.11 Summary 134& T. }" s7 y+ {5 r& a4 U
5.12 Examples 134
$ S9 r9 P3 A4 |( _  J2 w5.13 Problems 142
6 u' H$ e- ^2 w8 p; IBibliography 142
: x, E  R0 v1 o  ?4 l+ z
7 m3 f; N! }- {
8 E  G. `7 C" h
# ^" y$ d' Y1 G! b! D+ f3 u6 Experimental Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1453 _% ]4 c) x  L2 M
6.1 Introduction and General Requirements 145( ]& |. @, E9 A( Q" t
6.2 Creep 146
5 I" q, L0 d" x& O6.2.1 Creep: Simple Methods to Obtain J (t) 1460 j  o9 Q6 @( _$ K' j" I& n
6.2.2 Effect of Risetime in Transient Tests 146
) w  i7 w9 ?  z# I6 T6.2.3 Creep in Anisotropic Media 148
3 }  y$ Z  j# R2 Q; U; p9 Z6.2.4 Creep in Nonlinear Media 148
! T8 C2 p- @( d1 H+ a. H. N% C- l% R6.3 Inference of Moduli 150/ ~* n2 `8 m- A4 ^
6.3.1 Use of Analytical Solutions 150/ D8 T- k! b/ ?1 |
6.3.2 Compression of a Block 151
) H( y" f4 C7 _6.4 Displacement and Strain Measurement 152
/ A0 }, n# J' k& ]2 X, i! ]6.5 Force Measurement 156! w2 B8 d# {( S2 S+ Y
6.6 Load Application 157
. N3 n9 j! H6 f, D' O5 M3 z6.7 Environmental Control 157
: t, P; e" f+ c5 w: m6.8 Subresonant Dynamic Methods 158
7 i7 c# Z/ A8 r2 w# m1 N1 W6.8.1 Phase Determination 158' L- v* Y  Q- \2 W; a+ H
6.8.2 Nonlinear Materials 1609 w$ h$ t8 g: @' C3 l
6.8.3 Rebound Test 161
( L0 |; d5 N; @1 m6 E7 Z. ~7 _  F' a6.9 Resonance Methods 161
: L- y7 Y# H9 i, g+ w6.9.1 General Principles 161
8 n& D4 ?0 m3 [3 c; |" M" R5 t6.9.2 Particular Resonance Methods 163* N5 V& ]% Q4 Y/ w9 h
6.9.3 Methods for Low-Loss or High-Loss Materials 1666 p2 B  x- o, x
6.9.4 Resonant Ultrasound Spectroscopy 1683 Q+ H: T' G( ^
6.10 Achieving a Wide Range of Time or Frequency 171
2 o' B8 X4 Y' U1 v4 o2 A6.10.1 Rationale 1717 r! _1 f) C  u+ M' L
6.10.2 Multiple Instruments and Long Creep 172
' l  @- X6 G- B7 J4 ^6.10.3 Time–Temperature Superposition 172
( g# y8 I* k4 }  R8 F6.11 Test Instruments for Viscoelasticity 173
3 P- `& o3 m2 A( G( j# F* J7 g6.11.1 Servohydraulic Test Machines 173* t7 }. h, f% r3 ^
6.11.2A Relaxation Instrument 174
( ~  e6 N& }- d( v* `6.11.3 Driven Torsion Pendulum Devices 174' I' Z1 ?3 v) i2 y7 T! P
6.11.4 Commercial Viscoelastic Instrumentation 178: t& G7 e2 F* T$ s. l! c0 B) P
6.11.5 Instruments for a Wide Range of Time and Frequency 179
: B3 W" K4 U2 \1 s  s8 T, ^. ~3 }6.11.6 Fluctuation–Dissipation Relation 182
. P# V- |* h: X- _7 p6.11.7 Mapping Properties by Indentation 183
! I( U- t# W& k- m6.12 Wave Methods 184: g* f5 ]2 p* m+ F- V: z
6.13 Summary 188, u0 |  z3 F, `6 [
6.14 Examples 1881 W5 g3 A- V& b, u
6.15 Problems 200' E- g& F. j% s- \5 u/ M
Bibliography 2015 z; f  z; B! ]  p. \8 P  f) c

  d6 n, r; s; I: _/ `. T' n% b2 u) Q

% ?  g, R+ T# K: \" P7 D7 P! o7 Viscoelastic Properties of Materials . . . . . . . . . . . . . . . . . . . . . 207
" a* t' o5 S6 t" h1 {: f" F7.1 Introduction 207
8 Q! W: @: B+ k' I7.1.1 Rationale 207
- N# u+ [. O4 f7.1.2 Overview: Some Common Materials 207! E) t$ P% M  P# i0 A: N2 b
7.2 Polymers 208
4 Q" K! a9 X) Q2 H# ~5 K2 Z9 P- t7.2.1 Shear and Extension in Amorphous Polymers 208
2 Z! ?6 ?4 _8 t2 K& K7.2.2 Bulk Relaxation in Amorphous Polymers 212
1 H9 U" K$ D1 ]& h/ ^7.2.3 Crystalline Polymers 213, h5 z" v! z/ s1 f. K
7.2.4 Aging and other Relaxations 214) C% p1 T! W0 I+ b4 l: I/ z4 E. l
7.2.5 Piezoelectric Polymers 214- ]  o  Z0 n4 t2 F7 H! \
7.2.6 Asphalt 214
9 V- a+ a2 S* L1 m7.3 Metals 215
; e$ R, f+ M$ u1 I  }7.3.1 Linear Regime of Metals 215- e6 \4 a( N0 z# Y+ I$ F: @3 l
7.3.2 Nonlinear Regime of Metals 217% q2 {# v2 B! R% L- ^
7.3.3 High-Damping Metals and Alloys 219
4 J0 g: J6 L  z7.3.4 Creep-Resistant Alloys 224
* I* F" O$ Z6 k. D. _& t  M7.3.5 Semiconductors and Amorphous Elements 225
+ R6 N- G$ s6 S# J5 Y9 j7.3.6 Semiconductors and Acoustic Amplification 226" u* d# ^# C. B& o" u
7.3.7 Nanoscale Properties 2261 b9 L1 [# K5 l- Z5 w5 A; D# L3 _
7.4 Ceramics 227
' t8 S6 ]( z$ x" M$ E7.4.1 Rocks 227
8 [. w' a9 H$ h+ U: _) t7.4.2 Concrete 229
: T5 ~. v) T( q5 p9 W8 R, M7.4.3 Inorganic Glassy Materials 231
' v. Z3 z5 H+ H* z7.4.4 Ice 231# v! w. t4 d+ ], I9 U# L
7.4.5 Piezoelectric Ceramics 232- v5 f% p# K5 |" ?: B/ K1 f  G8 U
7.5 Biological Composite Materials 233
' s4 T' V* [# w& y4 V/ Z7.5.1 Constitutive Equations 234! ^8 f& q) N+ |% H9 @
7.5.2 Hard Tissue: Bone 234" b% N6 ]7 d; a* V; Q
7.5.3 Collagen, Elastin, Proteoglycans 236
) K- ?$ v) B, t7.5.4 Ligament and Tendon 237
8 I/ U$ a9 G+ B. L7.5.5 Muscle 240
) z% V2 H% V! G8 q  q7 H7.5.6 Fat 243  U+ m  w3 c5 y9 r, ]; B. j
7.5.7 Brain 243
& E1 i0 n  `: X" M) P" U9 z' L7.5.8 Vocal Folds 244: F4 w( [+ w: R+ x- u; m) L) n
7.5.9 Cartilage and Joints 244
) J& B9 Q- w. |& z2 R0 ~7.5.10 Kidney and Liver 246: R! p4 Y% F( l# Y, l
7.5.11 Uterus and Cervix 246
/ L+ q0 z8 D3 @! m7.5.12 Arteries 247
8 X* J/ h& Y4 W: {' q" {1 m/ }7.5.13 Lung 248
/ }9 z( t3 U# }1 J) H. j4 m7.5.14 The Ear 248
2 n+ }5 p- G9 F- v7.5.15 The Eye 249
* N7 M6 J2 ^$ |; }- c+ z! ^7.5.16 Tissue Comparison 251- `. M. d# Q  a) Z2 {' [
7.5.17 Plant Seeds 252/ Y9 _5 D9 S2 [1 N. f+ I
7.5.18 Wood 252
1 G5 G  ~5 d6 S0 G8 j7.5.19 Soft Plant Tissue: Apple, Potato 2535 l, i' b: G0 M! G, E) }
7.6 Common Aspects 253
4 W3 ?& |9 }8 q% }/ k6 E8 |/ h2 L- a7.6.1 Temperature Dependence 253  x; L. `- H/ x* F( L" e
7.6.2 High-Temperature Background 254
, V, S% C  i! A: s$ I! C) U7.6.3 Negative Damping and Acoustic Emission 255- i8 N+ v- t+ C! W; s. f
7.7 Summary 255. }1 q$ ~+ [9 S% H) J
7.8 Examples 2550 o1 p9 q# P7 ?. Z- x2 [* e
7.9 Problems 256
5 @/ ^8 y( [- r; y' Q3 XBibliography 2578 c6 |; k0 K& L% O/ D" i
; R7 S& C+ b+ e. F. K* g

5 u6 J: F6 S* k( x: t1 _7 }7 N& J6 N
/ K+ K( X9 l$ Z8 Causal Mechanisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271- w( `5 J% P" p+ i
8.1 Introduction 271
) l! ]" C: R/ ?, A0 z3 Z8.1.1 Rationale 271! _  y0 v: W; @' F- [( V$ f  L
8.1.2 Survey of Viscoelastic Mechanisms 271
' s: |8 }' k4 U. p8.1.3 Coupled Fields 273" A& U' T1 f9 z. t$ q
8.2 Thermoelastic Relaxation 274
% b( t# T3 T) V, M8.2.1 Thermoelasticity in One Dimension 274
3 U; v3 B- R( s7 Y/ H/ H8.2.2 Thermoelasticity in Three Dimensions 275/ e# Q$ N  i' c1 q( q5 _7 Y
8.2.3 Thermoelastic Relaxation Kinetics 2761 X2 M, T; t( y4 _: T  y7 N
8.2.4 Heterogeneity and Thermoelastic Damping 278" q  ^  w* S0 i1 G8 `6 a3 p
8.2.5 Material Properties and Thermoelastic Damping 2806 p8 M( J& V6 R1 t" L7 j$ o# e
8.3 Relaxation by Stress-Induced Fluid Motion 280
6 _/ y  S  l: @8.3.1 Fluid Motion in One Dimension 280& c3 Z5 C  b5 u- t/ m1 O
8.3.2 Biot Theory: Fluid Motion in Three Dimensions 281! f! k1 h8 d! K" }% E: a' S" `
8.4 Relaxation by Molecular Rearrangement 286
2 [: q0 |3 e. {& N8.4.1 Glassy Region 286
# {; y! d+ \3 N0 C8.4.2 Transition Region 2872 F* S. V2 N" x: R
8.4.3 Rubbery Behavior 289( u+ G+ M+ L/ x9 l. C
8.4.4 Crystalline Polymers 291+ A" I0 @5 J# z* Q  p
8.4.5 Biological Macromolecules 292
% Y2 j' U$ Q! X4 i8.4.6 Polymers and Metals 292  |, H. V; b6 H$ ]  I2 }" B
8.5 Relaxation by Interface Motion 292! W% s7 [7 J- C; q
8.5.1 Grain Boundary Slip in Metals 2920 S8 P. ~* I# Z8 s( |
8.5.2 Interface Motion in Composites 294" p/ W- t% v) z
8.5.3 Structural Interface Motion 294- l2 G* s0 }' e+ W( e' q0 \, f
8.6 Relaxation Processes in Crystalline Materials 294
3 w, O( |: o% L. G( d; z4 X8.6.1 Snoek Relaxation: Interstitial Atoms 294
8 c: F# r  I& {& K( K' G3 K8.6.2 Zener Relaxation in Alloys: Pairs of Atoms 298& {5 M) ^% r2 n5 |4 _- `
8.6.3 Gorsky Relaxation 299
/ I; s# b9 m. U6 W+ [, ~1 N: q8.6.4 Granato–L ¨ ucke Relaxation: Dislocations 300
  o# y  k. g' W* `" w# y; r3 p8.6.5 Bordoni Relaxation: Dislocation Kinks 3034 b$ ?7 x, |2 J( W% f  N2 n4 c6 \
8.6.6 Relaxation Due to Phase Transformations 305! D; o4 W6 b2 g* w7 T3 X0 v
8.6.7 High-Temperature Background 314
2 l1 c$ l! O/ y' k' H8.6.8 Nonremovable Relaxations 315
0 ~( q0 `; X6 t! a0 c* Y  P8.6.9 Damping Due to Wave Scattering 316
: R1 Y. R' C4 E5 ~# V8.7 Magnetic and Piezoelectric Materials 316
) x% {5 S/ C% g1 f2 k8.7.1 Relaxation in Magnetic Media 316
; ~# w/ J. ~  y2 n8.7.2 Relaxation in Piezoelectric Materials 318- U# g: D  ]4 U' C! q2 A! [
8.8 Nonexponential Relaxation 322
$ ^' w* o4 d& X, O5 X8.9 Concepts for Material Design 323
8 k" W+ C; C* s4 n; t. R4 ^8.9.1 Multiple Causes: Deformation Mechanism Maps 323) ]- K4 W( f8 G2 r1 O; {% x
8.9.2 Damping Mechanisms in High-Loss Alloys 326
# T" s# E8 H# X3 }3 t8.9.3 Creep Mechanisms in Creep-Resistant Alloys 326
7 p" m# L( I5 D" M7 `5 l8.10 Relaxation at Very Long Times 3279 t0 L( _6 \$ K8 B3 A
8.11 Summary 327
( j/ C& W3 J. B& T8 p8 c8.12 Examples 328
# q+ T( L7 g1 A! U, H# R: A8.13 Problems and Questions 332# b" l! y/ S2 g8 Z* r
Bibliography 332
* V8 S( h3 J; e1 x% N" D5 r# R, x+ l+ f+ S' I" E

6 L7 S, y3 D' f/ P, `* M& v9 v5 A& V( P* ]0 J7 u
9 Viscoelastic Composite Materials . . . . . . . . . . . . . . . . . . . . . . . 341
4 f# Q3 |# |: D7 X9.1 Introduction 341% X5 L3 {; x4 \7 e( }7 ], U
9.2 Composite Structures and Properties 341
) L1 O8 z# ]& H9.2.1 Ideal Structures 341. z* G+ k3 P. }3 E& ]) I4 J2 j% b
9.2.2 Anisotropy due to Structure 342
6 {$ X. N/ d) j& S+ W9 U. m6 E9.3 Prediction of Elastic and Viscoelastic Properties 344
" }" `/ X6 M' Y- n( a9.3.1 Basic Structures: Correspondence Solutions 344: i4 |7 h0 |0 `8 P" L8 i: D% i
9.3.2 Voigt Composite 345# w- i1 p6 i" ?9 ]- r  p+ {& e
9.3.3 Reuss Composite 345
3 G+ \) ?1 g! L! y9.3.4 Hashin–Shtrikman Composite 346+ c' N! f4 t; i! j2 t6 B  c. c* Q
9.3.5 Spherical Particulate Inclusions 3473 `' w5 f# N7 A" {6 }$ v
9.3.6 Fiber Inclusions 349
, s; G, ~* D  R2 f9 N' q9.3.7 Platelet Inclusions 349
( C9 N- I3 M  [9.3.8 Stiffness-Loss Maps 350$ H$ X* A- |: n: X
9.4 Bounds on the Viscoelastic Properties 353
# w: k  n' z. ?9.5 Extremal Composites 354! F: Z" y$ F& G! Q% Z9 G- C
9.6 Biological Composite Materials 356& W# F( h1 {+ n5 o+ j/ B' ^
9.7 Poisson’s Ratio of Viscoelastic Composites 357
; X) j' k8 V; w. z. I' v9.8 Particulate and Fibrous Composite Materials 358
1 }' S# t8 t6 m' d+ r( c3 M9.8.1 Structure 358; C6 u- \1 K# U9 z
9.8.2 Particulate Polymer Matrix Composites 359
3 X/ I( K! O5 {4 R3 B$ ^& l' ]9.8.3 Fibrous Polymer Matrix Composites 361
9 c! {! \# a# O& g& S9.8.4 Metal–Matrix Composites 362
5 R- S4 s1 X) x9.9 Cellular Solids 363
" B) R& q2 x, N" V2 A* `2 X9.10 Piezoelectric Composites 366
# E9 Q# Q+ ~  O7 m/ T9 g3 G9.11 Dispersion of Waves in Composites 366% w  Y0 F# ?8 N0 L% _+ y
9.12 Summary 367! N- H! O2 b4 S7 C. V
9.13 Examples 367
- f. s& Z: U! P- t% ]" q6 Y9.14 Problems 370
! y0 o/ a. o' z# P  SBibliography 3709 z7 P' b( W' b+ U

' O, z- X; P' K
- D& w3 o" v: E
2 J/ G' ^" u5 Y7 _/ T6 H, G10 Applications and Case Studies . . . . . . . . . . . . . . . . . . . . . . . . . 3774 x7 {5 [3 l' |& Y0 Z# C8 T* f! S
10.1 Introduction 377% C( u% O  H( _, A: ^% J
10.2 A Viscoelastic Earplug: Use of Recovery 377
+ C$ `& F) B( O10.3 Creep and Relaxation of Materials and Structures 378( }5 s, G5 T- G9 F! r" [
10.3.1 Concrete 3783 E# L5 c; ]* u' V! L. K
10.3.2 Wood 378
! O( S- y: W3 L: e10.3.3 Power Lines 3794 C, A) B! g4 _7 Z" E; H
10.3.4 Glass Sag: Flowing Window Panes 380) y3 _& }) R" Z7 v. w7 r- q  P
10.3.5 Indentation: Road Rutting 380
" t+ ?: }$ \4 Z$ d10.3.6 Leather 381
: f- {& t; C2 `10.3.7 Creep-Resistant Alloys and Turbine Blades 381! I  I4 J; n7 Z- l+ x
10.3.8 Loosening of Bolts and Screws 382( Q# q- |: k5 }9 ^( h8 |, p
10.3.9 Computer Disk Drive: Case Study of Relaxation 384
1 b- |; v/ }, @- n10.3.10 Earth, Rock, and Ice 3856 p0 ]. ?) j3 _$ Z0 M
10.3.11 Solder 386
' Q/ _4 O+ r1 |5 U# j10.3.12 Filamentsi nL ight Bulbs and Other Devices 3874 S8 p. ^' ?/ U. }% Z: m
10.3.13Tires: Flat-Spotting and Swelling 388
, j7 _. S2 W9 C" z% s% y( c) s10.3.14Cushionsfor Seats and Wheelchairs 388
3 \8 E5 v7 r$ F9 M2 c( o- U10.3.15 Artificial Joints 3895 _8 x, ~9 M8 D6 @
10.3.16 Dental Fillings 389. `9 `/ z5 C7 t# Z
10.3.17 Food Products 389
+ Y0 f+ ^" }5 @) O' U10.3.18 Seals and Gaskets 390* Y! p, a' n' O4 K  O( q6 p# r: X
10.3.19 Relaxationi nM usical Instrument Strings 390* J& F# v* V$ p, q
10.3.20 Winding of Tape 3919 m0 B' l/ F4 w8 ]# s; }3 ^
10.4 Creep and Recovery in Human Tissue 391
/ T6 s" E6 c% Z- I; K( l10.4.1 Spinal Discs: Height Change 391
) Q/ V) c% I& b0 A! D/ @6 u10.4.2 The Nose 392& J) w: P5 {4 }$ d( g
10.4.3 Skin 392
3 {( F' e# y. n10.4.4 The Head 393
$ i9 I9 c- r' M, O# C/ B( N2 ^! S10.5 Creep Damage and Creep Rupture 3949 k, j' Y# a9 p) B! l7 A
10.5.1 Vajont Slide 3945 n% T& e0 N( Z5 p+ ?0 k9 k9 w
10.5.2 Collapse of a Tunnel Segment 394
8 ]: L2 U# I0 K9 W* P10.6 Vibration Control and Waves 394
( C, F6 g# e9 n$ P# I" R* ]% ]10.6.1 Analysis of Vibration Transmission 394
8 ]5 W7 v: I/ h% _# k! r- F7 F10.6.2 Resonant (Tuned) Damping 397
, i' O' n( Z5 L! f& j10.6.3 Rotating Equipment Vibration 3973 F$ L9 N: Z0 b
10.6.4 Large Structure Vibration: Bridges and Buildings 398% o9 V! m5 A: v3 `; a6 ?8 [
10.6.5 Damping Layers for Plate and Beam Vibration 399( \3 Y6 m" Z, x6 {& ]/ r8 o
10.6.6 Structural Damping Materials 400
* e1 Y% D. \+ [7 @, Z% Q10.6.7 Piezoelectric Transducers 402, ~/ V9 q" a! t* ?. Z
10.6.8 Aircraft Noise and Vibration 4023 \1 y% J7 t# S: ^. q
10.6.9 Solid Fuel Rocket Vibration 404
4 I. d3 r7 C$ q. m. K% o0 q10.6.10 Sports Equipment Vibration 404
, n6 O6 E2 p# |7 w" e: N# E10.6.11 Seat Cushions and Automobiles: Protection of People 404
" a6 `' b& z" j+ r10.6.12 Vibrationi n ScientificI nstruments 406
: B$ J# k/ i' @- f) i10.6.13 Waves 406' M  f! j  u% m/ j
10.7 “Smart” Materials and Structures 407
6 _" n- u. T% q& O9 h10.7.1 “Smart” Materials 407
- s: ~4 ]1 g  o! b% i/ n% B10.7.2 Shape Memory Materials 4087 e% d& w# h3 ?8 `$ ]2 Q  ]+ n+ f
10.7.3 Self-Healing Materials 409- R% c" W/ o) C& f( t1 k4 a; u) h
10.7.4 Piezoelectric Solid Damping 409
8 m' w' j  k9 s: k10.7.5 Active Vibration Control: “Smart” Structures 4096 A/ z1 f) h  Z4 q- ~  i
10.8 Rolling Friction 409
6 k" v6 @  b6 @! m$ D  `10.8.1 Rolling Analysis 4107 d, \7 |: S' j. h3 d4 _
10.8.2 Rolling of Tires 411
; T# H3 a+ G, a8 \10.9 Uses of Low-Loss Materials 4120 t  A9 }. @% P. d3 B7 ~  I" H; a
10.9.1 Timepieces 412" D; _! y5 ^* A4 h" t+ n* m- G+ j
10.9.2 Frequency Stabilization and Control 413
4 ]0 R  j; `6 J$ r1 x3 a- z10.9.3 Gravitational Measurements 413+ g, H: A, F' U% t% D1 k( P
10.9.4 Nanoscale Resonators 4143 n8 X4 z, d( O: D, y6 a
10.10 Impulses, Rebound, and Impact Absorption 414/ S; ?% H/ b6 K8 w
10.10.1 Rationale 4144 D9 u2 b- B* S  Q# D5 Y; e/ }8 `
10.10.2 Analysis 415" V; y/ Z7 `. o" R& m
10.10.3 Bumpers and Pads 418# Y3 C& {2 a; e0 E- p
10.10.4 Shoe Insoles, Athletic Tracks, and Glove Liners 4192 V9 o6 y' ~7 Q2 I7 ^
10.10.5 Toughness of Materials 419" N7 ?$ X( ~" V" ]. ?
10.10.6 Tissue Viscoelasticity in Medical Diagnosis 420
5 {& j4 Y9 t+ [& E7 ~* y1 A: K10.11Rebound of a Ball 421
% k% c# p# a5 G: o+ j3 k) P" k10.11.1 Analysis 421/ J0 A: {* ?8 E7 z% z2 o
10.11.2 Applications in Sports 422
/ [, F/ H$ b0 O/ d10.12 Applications of Soft Materials 424
) r! U( L% l3 _0 J/ [/ m- Y10.12.1 Viscoelastic Gels in Surgery 424
, w! Z/ T- i! K# x! @10.12.2 Hand Strength Exerciser 424
, `$ @+ R2 \0 _. Y  |10.12.3 Viscoelastic Toys 424
# X0 b0 d4 s* p10.12.4 No-Slip Flooring, Mats, and Shoe Soles 425" [$ `8 Y7 a2 z2 b+ J
10.13 Applications Involving Thermoviscoelasticity 425
) x& }; ~8 U6 L  |9 p: ]$ J10.14 Satellite Dynamics and Stability 426
1 u1 j. |/ @% w- Y( _3 B10.15 Summary 428
% o& t  r. J* r5 i, |1 |9 s10.16 Examples 429
: x& k8 [" U4 B" k10.17 Problems 4315 e$ S! P9 P& s) A1 ~* n
Bibliography 431$ k9 `" }- E; C/ T( e

0 }8 x$ X) L/ q+ O
5 H& @8 F# M  |" F: S0 p" `* C! \- x0 y: O, g1 v4 L
A: Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 441
* [; }& R8 b; `- ?7 Z' GA.1 Mathematical Preliminaries 441- D$ c% x# _, d
A.1.1 Introduction 441
2 N0 U/ ^7 }' Z6 vA.1.2 Functionals and Distributions 441
8 r+ B1 M1 O" f5 g8 }A.1.3 Heaviside Unit Step Function 4428 f7 U; O8 Q% G; P4 Y! t1 k
A.1.4 Dirac Delta 4420 C/ |# l; [2 W
A.1.5 Doublet 443
2 o; M4 P0 P. A$ P* |A.1.6 Gamma Function 445" b; u& P9 q/ Q1 i# g% k; f1 i/ n' ~
A.1.7 Liebnitz Rule 445) N( ]% o4 t4 s
A.2 Transforms 445
$ b4 Y* o% X( f2 J% MA.2.1 Laplace Transform 446
- p3 L; S+ A6 IA.2.2 Fourier Transform 446
& b+ {7 L  |  e( O; c" c6 R4 |4 n7 T5 _A.2.3 Hartley Transform 447( j2 r9 A/ s( q: A6 ~6 _
A.2.4 Hilbert Transform 447
( @1 B1 K/ h( a8 w' zA.3 Laplace Transform Properties 448
5 S$ i4 Y1 {0 h$ S  @. }A.4 Convolutions 449( Z* l& S* f' i; R3 D  t" S
A.5 Interrelations in Elasticity Theory 451
5 v5 v# y5 k/ Q) cA.6 Other Works on Viscoelasticity 451
( O3 ?+ ^8 u6 E$ l6 T0 l7 ~* W/ {/ EBibliography 452
. i- Z$ S, F* {7 X% H7 [1 T" f7 f5 V: V/ K' ^

1 U! u9 B( Z. A' c/ v2 p" E9 y' qB: Symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 455
8 O8 w0 b* b; o* z1 V) |B.1 Principal Symbols 4555 @" D/ U6 F5 p3 l
Index 457
1 B# O2 E' V% V; }" ^; Y0 w
  H, J* t4 ~' A9 T. [
6 K# `4 _9 n. i- G' _; I' Z
回复

使用道具 举报

您需要登录后才可以回帖 登录 | 注册会员

本版积分规则

Archiver|手机版|小黑屋|机械社区 ( 京ICP备10217105号-1,京ICP证050210号,浙公网安备33038202004372号 )

GMT+8, 2025-9-17 10:44 , Processed in 0.073456 second(s), 22 queries , Gzip On.

Powered by Discuz! X3.5 Licensed

© 2001-2025 Discuz! Team.

快速回复 返回顶部 返回列表