GE FANUC 310i SERIES CONTROL
$ }8 a1 b+ u* W! KPREPARATORY FUNCTION
; A1 Y# {+ s% @* g" q1 h8 n8 DThe preparatory function codes are used to establish modes of operation. The following G codes are listed in their numeric sequence and also by group. In any group, one G code will cancel the other. The * denotes the default code when power is applied to the control./ z( e7 S& D& x I+ x) [, B
' ^1 S# i% V, {# OUp to five G codes may be programmed on one line. If a line contains conflicting G codes, such as G00 G01, the last one read will control, but not in all cases.
/ P( m5 l' J* }, B0 s9 ?, [CODE GROUP DESCRIPTION MODAL STD./OPT; R/ d2 k5 Y$ g7 D- I N
CODE GROUP DESCRIPTION MODAL STD./OPT
+ f" V' U. s( B- O# x yG00 01 Point to point positioning YES Standard
$ A# L- I/ H) B H% K" d$ FG01* 01 Linear interpolation YES Standard
0 j/ o/ N8 z, }8 J8 ~4 s- lG02 01 Circular interpolation-CW Arc YES Standard. |' {! O7 H. }& J: z1 V4 g/ ?
G03 01 Circular interpolation-CCW Arc YES Standard
! {1 t$ g1 @% U( m- O0 `8 s, \: ZG04 00 Dwell NO Standard
. u( C2 n R; KG09 00 Deceleration NO Standard
; ]1 L. x, S. G# M6 F$ HG10 00 Programmable data input mode SOME Optional
1 J6 S0 i2 S \% d4 SG11 00 Programmable data input mode cancel YES Optional
3 R- j: \; q/ E, c5 gG10.6 00 Tool retract and recover NO Optional4 S- A& m( @: H) ~& B
G12.1 26 Polar coordinate interpolation YES Optional
+ m( D: `. {( Y zG13.1* 26 Polar coordinate interpolation cancel YES Optional |. T8 j# T* M2 @
G18* 16 ZX plane selection YES Standard1 w, A2 C4 d# T* p& }4 }6 ] z
G19 16 YZ plane selection YES Standard& `. z1 S: j5 m
G20 01 Turning cycle YES Standard
# c% z& `7 v2 vG21 01 Threading cycle YES Standard
8 Z" \3 s3 Q$ |) i+ ?' ]G24 01 Facing cycle YES Standard
! h$ e, I, w3 o0 s, Q" }G22 04 Stored stroke check ON YES Optional" S: |6 S: Y6 t/ q
G23 04 Stored stroke check Off YES Optional$ z# w: ?+ \$ ^; {2 T
G27 00 Reference point return check NO Standard
5 d! K0 W3 W/ {G28 00 Reference point return NO Standard
# z* D$ S7 I! | m0 uG29 00 Return from reference point NO Standard
) ?$ t- x+ t' P0 w$ K, E0 Q1 xG30 00 2nd, 3rd & 4th reference point return NO Optional
& c0 q9 G6 i2 M8 o* z* {8 x+ xG30.1 00 Floating reference point return NO Optional5 `; e& S% m# X/ G% o3 q2 B
G31 00 Skip function NO Optional, t: h7 e1 Q# N" N
G33 01 Thread cutting, constant lead YES Standard
! a4 j7 `4 l& O" \0 [9 w$ [G40* 07 Tool nose radius compensation cancel YES Standard
; V; p9 R; a( Z) QG41 07 Tool nose radius compensation Left YES Standard
- f, r4 g" g: r( R4 \G42 07 Tool nose radius compensation Right YES Standard
9 r+ V2 @; } w3 `- c- nG43.7 23 Tool offset compensation (extended tool selection) YES Optional
1 u) r/ {' ^3 ?$ u( B1 w3 iG52 00 Local coordinate system shift YES 2 axis only
3 J6 X, S- U7 o: KG53 00 Machine coordinate system selection NO Standard
$ M* T- x& ]" h+ ?# ZG54 14 Work coordinate system 1 selection YES Standard
" f B7 J; Q/ X; T6 FG55 14 Work coordinate system 2 selection YES Standard5 h' |0 d d: P
CODE GROUP DESCRIPTION MODAL STD./OPT4 H4 E+ t6 A9 V7 M
G56 14 Work coordinate system 3 selection YES Standard
5 Z3 ^7 J4 U# O0 y. SG57 14 Work coordinate system 4 selection YES Standard
0 }0 `. T9 R) qG58 14 Work coordinate system 5 selection YES Standard
! s7 G- c% D+ b8 AG59 14 Work coordinate system 6 selection YES Standard5 O2 @. m# k& M6 b# E m
G61 15 Exact stop mode YES Standard+ D; `0 u% T5 p4 E* X- J; G) t
G62 15 Automatic corner override YES Standard
0 Q; x e4 h! a V- X8 q6 eG64* 15 Cutting mode YES Standard2 {: N( K3 D- j7 ~
G65 00 Marco call NO Optional
W3 n. G( Q8 vG66 12 Macro mode call A YES Optional" T/ {" v3 b8 {+ t1 @5 _: P& z$ ?& R
G67* 12 Macro mode call cancel YES Optional
: f! r/ S8 T& x6 {* ~' t9 EG68 13 Balance cutting YES Optional2 F8 U; F2 H% B; z1 B
G69 13 Cancel balance cutting YES Optional; J5 n" k4 }6 s. C5 v
G70 06 Inch programming YES Standard( \8 Z& l# K$ M7 Q* I! e
G71 06 Metric programming YES Standard
d$ c% {5 P# O, FG72 00 Finishing cycle YES Optional
/ k+ V: M0 I; K5 l7 O8 X2 X/ H3 M+ zG73 00 Stock removal-turning YES Optional; k6 X x, E; M
G74 00 Stock removal-facing YES Optional9 L& i2 ~- L$ g) ^. Q$ n% x
G75 00 Pattern repeat YES Optional1 }# X) D- C7 H6 Q9 P
G76 00 Peck drilling in Z axis YES Optional
( w, _ v( J& |7 TG77 00 Grooving-X axis YES Optional
" S* y+ p8 ?& I& k1 ^G78 00 Threading cycle YES Optional
) N4 M( f$ b' a+ f* q$ u0 A( BG80* 09 Canned cycle cancel YES Optional
5 F7 y) T1 u% t# u3 a2 {, |G83 09 Face drilling cycle YES Optional
- v- v" B, ^2 w e- yG84 09 Face tapping cycle YES Optional
; ]5 u# Y7 t& {8 k& JG85 09 Face boring cycle YES Optional8 [, X- J3 D$ x" w! G' ]% a- u: M
G87 09 Side drilling cycle YES Optional& k: V* B8 f) d9 g
G88 09 Side tapping cycle YES Optional
8 u* C8 b1 p0 H5 J3 V" O0 `! cG89 09 Side boring cycle YES Optional `4 k' m, }# w3 Q
G90* 03 Absolute dimension input YES Standard
& g) D+ N+ ]$ x8 v5 R p5 r5 F5 UG91 03 Incremental dimension input YES Standard1 O' I8 M# T7 \! |7 ^
G92 00 Work change/ maximum table speed NO Standard
+ b& P3 W7 Z2 S" O& Z0 Y8 Q4 b- dG94 05 Inches (MM) per minute feedrate YES Standard, {! {7 m, t0 j( z8 b
G95* 05 Inches (MM) per table revolution YES Standard1 L; R6 w) S% V' A
G96 02 Constant surface speed YES Standard
- B* X9 o+ `, QG97* 02 Direct rpm YES Standard
5 E% R0 t$ ]; m6 P; W4 tG98* 10 Canned cycle initial level return YES Optional' z0 M6 Y5 m" T m: A. g
G99 10 Canned cycle R point level return YES Optional |